Skip to main content
Log in

The finite element solutions of laminar flow and combined convection of air in a staggered or an in-line tube-bank

Die Finite-Elemente-Lösung von laminarer Strömung und kombinierter Konvektion von Luft in einer versetzten oder fluchtenden Rohranordnung

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

A finite element method is used to solve the full Navier-Stokes and energy equations for the problems of laminar combined convection from three isothermal heat horizontal cylinders in staggered tube-bank and four isothermal heat horizontal cylinders in in-line tube-bank. The variations of surface shear stress, pressure and Nusselt number are obtained over the entire cylinder surface including the zone beyond the separation point. The predicted values of total, pressure and friction drag coefficients, average Nusselt number and the plots of velocity flow fields and isotherms are also presented.

Zusammenfassung

Eine Methode der finiten Elemente wird zur Lösung der vollständigen Navier-Stokes- und der Energiegleichung für die Probleme der laminaren kombinierten Konvektion an drei isothermen geheizten horizontalen Zylindern in versetzter Rohranordnung sowie für vier isotherme geheizte horizontale Zylinder in fluchtender Anordnung verwendet.

Die Veränderung der Wandschubspannung, des Druckes und der Nusselt-Zahl werden für die gesamte Zylinderoberfläche, einschließlich des Bereiches nach dem Ablösepunkt, bestimmt. Die Werte des gesamten Widerstandsbeiwertes aufgrund von Druck und Reibung, die durchschnittliche Nusselt-Zahl und die Diagramme des Geschwindigkeitsfeldes und der Isothermen werden ebenfalls aufgezeigt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

specifie heat

C D :

total drag coefficient

C f :

friction drag coefficient

C p :

pressure drag coefficient

D :

diameter of cylinder,L=2R 0

G, g :

gravitational acceleration

Gr :

Grashof number, gβ(TwT )D 3/v 2

h :

local heat transfer coefficient

K :

thermal conductivity

L :

spacing between the centers of cylinder

M l :

shape function

N i :

shape function

Nu,\(\overline {Nu}\) :

local and average Nusselt numbers

P :

dimensionless pressure, p*u 2

p *,p :

pressure, free stream pressure

Pe :

Peclet number,RePr

Pr :

Prandtl number, μc/K

Ra :

Rayleigh number,Gr Pr

Re :

Reynolds number,Du /v

R 0 :

radius of cylinder

T :

temperature

T w :

temperature on cylinder surface with fixed value

T :

free stream temperature

v :

dimensionless x-direction component of velocity,v */u

u * :

x-direction component of velocity

u :

free stream velocity

v :

dimensionless Y-direction component of velocity,v */u

v * :

Y-direction component of velocity

X :

x-direction axis

x :

dimensionless x-direction coordinate,x */D

x* :

x-direction coordinate

Y :

Y-direction axis

y :

dimensionless Y-direction coordinate,y */D

y * :

Y-direction coordinate

β :

coefficient of volumetric thermal expansion

θ :

plane angle

μ :

dynamic viscosity

ν :

kinematic viscosity, μ/ϱ

ϱ :

density of fluid

τ w :

dimensionless surface shear stress, τ w* u 2

τskw/* :

surface shear stress

φ :

dimensionless temperature,\(\frac{{T - T_\infty }}{{T_w - T_\infty }}\)

References

  1. Zhukauskas, A.: Heat transfer from tubes in cross flow. Adv. Heat Transfer 8 (1972) 93–160

    Google Scholar 

  2. Bergelin, O. P.; Brown, G. A.; Doberstein, S. C.: Heat transfer and fluid friction during flow across banks of tubes-IV. Trans ASME 74 (1952) 953–960

    Google Scholar 

  3. Massey, T. H.: The prediction of flow and heat transfer in banks of tubes in cross-flow. Ph.D. thesis, Central Electricity Research Laboratories, Leatherhead, Surrey, Feb. (1976)

    Google Scholar 

  4. Bergelin, O. P.; Davis, E. S.; Hull, H. L.: A study of three tube arrangements in unbaffled tubular heat exchangers. Trans. ASME 71 (1949) 369–374

    Google Scholar 

  5. Launder, B. E.; Massey, T. H.: The numerical prediction of viscous flow and heat transfer in tube banks. Trans. ASME, J. Heat Transfer 100 (1978) 565–571

    Google Scholar 

  6. Fujii, M.; Fujii, T.; Nagata, T.: A numerical analysis of laminar flow and heat transfer of air in an in-line tube bank. Numerical Heat Transfer 7 (1984) 89–102

    Google Scholar 

  7. Weaver, D. S.; Abd-Rabbo, A.: A flow visualization study of a square array of tubes in water crossflow. Trans. ASME, J. Fluids Eng. 107 (1985) 354–363

    Google Scholar 

  8. Aiba, S.; Tsuchida, H.; Ota, T.: Heat transfer around a tube in a staggered tube bank. Trans. JSME 48 (1982) 1976–1984

    Google Scholar 

  9. Antonopoulos, K. A.: Heat transfer in tube assemblies under conditions of laminar axial, transverse and inclined flow. Int. J. Heat and Flow 6 (1985) 193–204

    Google Scholar 

  10. Sparrow, E. M.; Lee, L.: Analysis of mixed convection from a horizontal cylinder. Int. Heat Mass Transfer 19 (1976) 229–232

    Google Scholar 

  11. Merkin, J. H.: Mixed convection from a horizontal circular cylinder. Int. Heat Mass Transfer 20 (1976) 73–77

    Google Scholar 

  12. Hatton, A. P.; James, D. D.; Swire, H. W.: Combined forced and natural convection with low-speed air flow over horizontal cylinders. J. Fluid Mech. 42 (1970) 17–31

    Google Scholar 

  13. Badr, H. H.: Laminar combined convection from a horizontal cylinder-parallel and contra flow regimes. Int. J. Heat Mass Transfer 27 (1984) 15–27

    Google Scholar 

  14. Taylor, C; Hughes, T. G.: Finite element programming of the Navier-Stokes equations. West Cross: Pineridge Press 1981, pp. 30–119

    Google Scholar 

  15. Dennis, S. C. R.; Chang, G.: Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100. J. Fluid Mech. 42 (1970) 471–489

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, K.L., Chen, C.K. The finite element solutions of laminar flow and combined convection of air in a staggered or an in-line tube-bank. Wärme- und Stoffübertragung 23, 93–101 (1988). https://doi.org/10.1007/BF01637131

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01637131

Keywords

Navigation