Skip to main content
Log in

In situ assessment of modification of sediment properties by burrowing invertebrates

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Benthic organisms can significantly alter the physical properties of marine sediments, but it has hitherto been difficult to assess and quantify the effects of bioturbation. In situ geophysical techniques offer new methods for measuring these effects: measurement of acoustic shear-wave velocity and electrical resistivity allows nondestructive assessment of the properties of the grain framework and pore-fluid matrix, respectively, of the seabed sediment. The influence of burrowing invertebrates on the structural properties of sandy sediments at intertidal locations on the coast of Wales (UK) was investigated during the periol 1986–1987 using these techniques. Three species (Arenicola marina, Corophium arenarium and Lanice conchilega) were selected on the basis of their contrasting styles of burrow construction. All three species produced measurable and significant, although different, changes in bed properties. They modified shear-wave propagation through the bed by changing bed rigidity: while A. marina and C. arenarium decreased rigidity by creating open burrows, L. conchilega increased rigidity by building shell-lined tubes. All produced a decrease in electrical resistivity by altering porosity and/or tortuosity, which implies an increase in permeability; these changes were attributable not only to the presence of the burrows but also to modification of the between-burrow sediment texture and bed properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Aller, R. C., Yingst, J. Y. (1980). Relationships between microbial distributions and the anaerobic decomposition of organic matter in surface sediments of Long Island Sound, USA. Mar. Biol. 56: 29–42

    Google Scholar 

  • Baumfalk, Y. A. (1979). Heterogeneous grain-size distributions in tidal-flat sediment caused by bioturbation activity of Arenicola marina (Polychaeta). Neth. J. Sea. Res. 13: 428–440

    Google Scholar 

  • Cadée, G. C. (1976). Sediment reworking by Arenicola marina on tidal flats in the Dutch Wadden Sea. Neth. J. Sea Res. 10: 440–460

    Google Scholar 

  • Cadée, G. C. (1979). Sediment reworking by the polychaete Heteromastus filiformis on a tidal flat in the Dutch Wadden Sea. Neth. J. Sea Res. 13: 441–456

    Google Scholar 

  • Carey, D. A. (1983). Particle resuspension in the benthic boundary layer induced by flow around polychaete tubes. Can. J. Fish. aquat. Sciences 40: 301–308

    Google Scholar 

  • Carver, R. E. (1971). Procedures in sedimentary petrology. Wiley Interscience, New York

    Google Scholar 

  • Eckman, J. E., Nowell, A. R. M., Jumars, P. A. (1981). Sediment destabilisation by animal tubes. J. mar. Res. 39: 361–374

    Google Scholar 

  • Folk, R. L., Ward, W. C. (1957). Brazos river bar: a study in the significance of grain size parameters. J. sedim. Petrol. 27: 3–26

    Google Scholar 

  • Goldsberry, S. L. (1985). Determination of permeability in in situ marine floor sediments. SACLANT ASW Research Centre, La Spezia, Italy (Report No. SACLANTCEN-SM-185)

    Google Scholar 

  • Grant, W. D., Boyer, L. F., Sanford, L. P. (1982). The effects of bioturbation on the initiation of motion of intertidal sands. J. mar. Res. 40: 659–677

    Google Scholar 

  • Gray, J. S. (1974). Animal—sediment relationships. Oceanogr. mar. Biol. A. Rev. 12: 223–261

    Google Scholar 

  • Hamilton, E. L. (1971). Elastic properties of marine sediments. J. geophys. Res. 76: 579–604

    Google Scholar 

  • Ingle, R. W. (1966). An account of the burrowing behaviour of the amphipod Corophium arenarium Crawford (Amphipoda: Corophiidae). Ann. Mag. nat. Hist. (Ser. 13) 19: 309–317

    Google Scholar 

  • Jackson, P. D., Taylor Smith, D., Stanford, P. N. (1978). Resistivity—porosity—particle shape relationships for marine sands. Geophysics 43: 1250–1268

    Google Scholar 

  • Jones, S. E. (1990). Geophysical properties of surficial sediments: textural and biological controls. Thesis. University of Wales, Bangor

    Google Scholar 

  • Jones, S. E., Jago, C. F. (1991). Small-scale in situ measurements of S-H velocity in surficial sedimentary deposits: localised textural and biological controls. In: Hovem, J. M., et al. (eds.) Shear waves in marine sediments. Kluwer Academic Publishers, Dordrecht, p. 313–320

    Google Scholar 

  • Lovell, M. A. (1984). Thermal conductivity and permeability assessment by electrical resistivity measurements in marine sediments. Mar. Geotechnol. 6: 205–240

    Google Scholar 

  • Luckenbach, M. W. (1986). Sediment stability around animal tubes: the roles of hydrodynamic processes and biotic activity. Limnol. Oceanogr. 31: 779–787

    Google Scholar 

  • Meadows, P. S., Meadows, A. (1991). The geotechnical and geochemical implications of bioturbation in marine sedimentary ecosystems. Symp. zool. Soc. Lond. 63: 157–181

    Google Scholar 

  • Meadows, P. S., Reid, A. (1966). The behaviour of Corophium volutator. J. Zool., Lond. 150: 387–399

    Google Scholar 

  • Meadows, P. S., Tait, J. (1985). Bioturbation, geotechnics and microbiology at the sediment—water interface in deep sea sediments. Proc. 19th Eur. mar. Biol. Symp. 191–199 [Gibbs, P. E. (ed.), Cambridge University Press, Cambridge]

    Google Scholar 

  • Meadows, P. S., Tait, T. (1989). Modification of sediment permeability and shear strength by two burrowing invertebrates. Mar. Biol. 101: 75–82

    Google Scholar 

  • Meadows, P. S., Tufail, A. (1986). Bioturbation, microbial activity and sediment properties in an estuarine ecosystem. Proc. R. Soc. Edinb. (Sect. B) 90: 1–14

    Google Scholar 

  • Myers, A. C. (1977). Sediment processing in a marine subtidal sandy bottom community. I. Physical aspects. J. mar. Res. 33: 609–632

    Google Scholar 

  • Nacci, V. A., Wang, M. C., Gallagher, J. (1974). Influence of anisotropy and soil structure on elastic properties of sediments. In: Hampton, L. (ed.) Physics of sound in marine sediments. Plenum Press, New York, p. 63–87

    Google Scholar 

  • Nowell, A. R. M., Jumars, P. A., Eckman, J. E. (1981). Effects of biological activity on the entrainment of marine sediments. Mar. Geol. 42: 133–153

    Google Scholar 

  • Rhoads, D. C., Boyer, L. F. (1982). Effects of marine benthos on physical properties of sediments. A successional perspective. In: McCall, P. L., Tevesz, M. J. S. (eds.) Animal—sediment relation. Plenum Press, New York, p. 3–51

    Google Scholar 

  • Richardson, M. (1983). The effects of bioturbation of sediment elastic properties. Bull. Soc. géol. Fr. 25: 505–513

    Google Scholar 

  • Richardson, M., Young, D. K., Briggs, K. B. (1983). Effects of hydrodynamic and biological processes on sediment geoacoustic properties in Long Island Sound, U.S.A. Mar. Geol. 52: 210–226

    Google Scholar 

  • Schäfer, W. (1972). Ecology and paleoecology of marine environments. University of Chicago Press, Chicago

    Google Scholar 

  • Schultheiss, P. J. (1983). The influence of packing structure on seismic wave velocities in sediments. University College of North Wales, Menai Bridge (Mar. Geol. Rep. No. 83/1)

    Google Scholar 

  • Shirley, D. J. (1978). An improved shear wave transducer. J. acoust. Soc. Am. 63: 1643–1645

    Google Scholar 

  • Silva, A. J. (1974). Marine geomechanics: overview and projections. In: Inderbitzen, A. L. (ed.) Deep-sea sediments: physical and mechanical properties. Plenum Press, New York, p. 45–62

    Google Scholar 

  • Straaten, L. M. J. U. van (1952). Biogene textures and the formation of shell beds in the Dutch Wadden Sea. Proc. K. ned. Akad. Wet. (Sect. B) 55: 500–516

    Google Scholar 

  • Wu, S., Gray, D. H., Richart, F. E. (1984). Capillary effects on dynamic modulus of sands and silts. J. geotech. Engng Am. Soc. civ. Engrs 110: 1188–1203

    Google Scholar 

  • Yingst, J. Y., Rhoads, D. C. (1978). Sea floor stability in central Long Island Sound. Part II. Biological interactions and their potential importance for seafloor erodibility. In: Wiley, M. A. (ed.) Estuarine interactions. Academic Press, New York, p. 245–260

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Pérès, Marseille

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, S.E., Jago, C.F. In situ assessment of modification of sediment properties by burrowing invertebrates. Marine Biology 115, 133–142 (1993). https://doi.org/10.1007/BF00349395

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00349395

Keywords

Navigation