Skip to main content
Log in

Effects of salinity and bromine on zygotes and embryos of Fucus vesiculosus from the Baltic Sea

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Zygotes and young embryos derived from Fucus vesiculosus collected in the archipelgo of Stockholm in 1990, growing at a salinity of 6 to 7‰ S, were cultured under different salinity conditions and in media of different bromine concentrations. Optimum salinity was 10 to 12‰ S for germination (rhizoid initiation) while apical hair formation showed a broader tolerance curve with an optimum at 8 to 14‰ S. Bromine caused inhibition of early development of F. vesiculosus. At 6‰ salinity a 50% reduction in germination took place at 10.0 mM Br and at 1.25 mM Br only 4.7% of the embryos developed apical hairs, as compared to 32.7% in the control. Bromine toxicity decreased at higher salinities. The results indicate that F. vesiculosus in the Baltic Sea has diverged from its Atlantic progenitors and to some extent acclimated to low salinity. Still, the salinity in the normal environment of the tested population is lower than optimum, leading to a lower degree of germination of zygotes, a lower growth rate of young embryos and probably also a higher sensitivity to additional stress factors such as chemical pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Brawley, S. H., Wetherbee, R., Quatrano, R. S. (1976a). Fine-structural studies of the gamete and embryo of Fucus vesiculosus (L) (Phaeophyta). I. Fertilization and pronuclear fusion. J. Cell Sci. 20: 233–254

    Google Scholar 

  • Brawley, S. H., Wetherbee, R., Quatrano, R. S. (1976b). Fine-structural studies of the gamete and embryo of Fucus vesiculosus (L) (Phaeophyta). II. The cytoplasm of the egg and young zygote. J. Cell Sci. 20: 255–271

    Google Scholar 

  • Breuer, G., Schramm, W. (1988). Changes in macroalgal vegetation of the Kieler Bright (Western Baltic Sea) during the past 20 years. Kieler Meeresforsch. 6 (Sdhft): 241–255

    Google Scholar 

  • Fenical, W. (1975). Halogenation in the Rhodophyta. A review. J. Phycol. 11: 245–259

    Google Scholar 

  • Fries, L. (1966). Influence of iodine and bromine on growth of some red algae in axenic culture. Physiologia Plant. 19: 800–808

    Google Scholar 

  • Haage, P. (1975). Quantitative investigations of the Baltic Eucus belt macrofauna 2. Quantitative seasonal fluctuations. Contr. Askö Lab., Univ. Stockh. 9: 1–88

    Google Scholar 

  • Hellebust, J. A. (1976). Osmoregulation. Ann. Rev. Pl. Physiol. 27: 485–505

    Google Scholar 

  • Jansson, A.-M., Kautsky, N. (1977). Quantitative survey of hard bottom communities in a Baltic archipelago. In: Keegan, B. F., O'Ceidigh, P., Boaden, P. J. S. (eds.) Biology of benthic organisms. Pergamon Press, New York, p. 359–366

    Google Scholar 

  • Kangas, P., Autio, H., Hällfors, G., Luther, H., Niemi, Å., Saalema, H. (1982). A general model of the decline of Fucus vesiculosus at Tvärminne, south coast of Finland in 1977–81. Acta bot. fenn. 118: 1–27

    Google Scholar 

  • Kautsky, H. (1988). Factors structuring phytobentic communities in the Baltic Sea. Ph. D. dissertation, Dept. Zoology, Univ. of Stockholm. Stockholm

    Google Scholar 

  • Kautsky, H., Kautsky, L., Kautsky, N., Kautsky, U., Lindblad, C. (1992). Aspects of the Fucus vesiculosus community in the Baltic Sea. Acta Phytogeogr. Suec. 78: 33–48

    Google Scholar 

  • Kautsky, N., Kautsky, H., Kautsky, U., Waern, M. (1986). Decreased depth penetration of Fucus vesiculosus (L) since the 1940s indicates eutrophication of the Baltic Sea. Mar. Ecol. Prog. Ser. 28: 1–8

    Google Scholar 

  • Kautsky, N., Tedengren, M. (1992). Ecophysiological strategies in Baltic Sea invertebrates. Proc. Baltic Marine Biologists Symposium. Helsingör, Denmark, August 1991. Olsen & Olsen, Helsingør

    Google Scholar 

  • Kirst, G. O., Bisson, M. A. (1979). Regulation of turgor pressure in marine algae: ions and low-molecular-weight organic compounds. Aust. J. Pl. Physiol. 6: 539–556

    Google Scholar 

  • Kullenberg, G. (1981). Physical oceanography. In: Voipio, A. (ed.) The Baltic Sea. Elsevier Oceanography Ser. 30, Amsterdam, p. 135–181

  • Levring, T. (1947). Remarks on the surface layers and the formation of the fertilization membrane in Fucus eggs. Meddn. Göteborgs bot. trädgård 17: 97

    Google Scholar 

  • Lehtinen, K.-J., Notini, M., Mattson, J., Landner, L. (1988). Disappearance of bladderwrack (Fucus vesiculosus, L.) in the Baltic Sea: relation to pulp mill chlorate. Ambio 17(6): 387–393

    Google Scholar 

  • Lindblad, C., Kautsky, U., André C., Kautsky, N., Tedengren, M. (1989). Functional respons of Fucus vesiculosus communities to tributyltin measured in an in situ continuous flow-through system. Hydrobiologia 188/189: 277–283

    Google Scholar 

  • Lindvall, B. (1984). The condition of a Fucus-community in polluted archipelago area on the east coast of Seden. (Suppl.) Ophelia 3: 147–150

    Google Scholar 

  • Lobban, C. S., Harrison, P. J., Duncan, M. J. (1985). The physiological ecology of seaweeds. Cambridge University Press, Cambridge.

    Google Scholar 

  • Mäkinen, A., Haahtela, I., Ilvessalo, H., Lehto, J., Rönnberg, O. (1984). Changes in littoral rocky shore vegetation in the Seili area, SW archipelago of Finland. Ophelia 3 (Suppl.): 157–166

    Google Scholar 

  • McLachlan, J. (1977). The effects of nutrients on growth and development of embryos of Fucus edentatus Pyl. (Phaeophyceae, Fucales). Phycologia 16: 329–338

    Google Scholar 

  • McLachlan, J., Chen, I. C. M., Edelstein, T. (1971). The culture of four species of Fucus under laboratory conditions. Can. J. Bot. 49: 1463–1469

    Google Scholar 

  • Munda, I. M. (1964). Water and electrolyte exchange in the brown algae Ascophyllum nodosum L. Le Jot., Fucus vesiculosus L. and Fucus ceranoides L. Botanical Mar. 6: 158–188

    Google Scholar 

  • Munda, I. M., Hudnik, V. (1988). The effects of Zn, Mn, and Co accumulation on growth and chemical composition of Fucus vesiculosus L. under different temperature and salinity conditions. Pubbl. Staz. zool. Napoli (I. Mar. Ecol.) 9(3): 213–225

    Google Scholar 

  • Munda, I. M., Kremer, B. P. (1977). Chemical composition and physiological properties of fucoids under conditions of reduced salinity. Mar. Biol. 42: 9–16

    Google Scholar 

  • Pedersén, M. (1969). The demand for iodine and bromine of three marine brown algae grown in bacteria-free cultures. Physiologia Plant. 22: 680–685

    Google Scholar 

  • Pekkari, S. (1973). Effects of sewage water on benthic vegetation. Oikos 15 (Suppl.): 185–188

    Google Scholar 

  • Rönnberg, O. (1984). Recent changes in the distribution of Fucus vesiculosus L. around the Åland Islands (N. Baltic). Ophelia 3 (Suppl.): 189–193

    Google Scholar 

  • Rosemarin, A., Mattsson, J., Lehtinen, K.-J., Notini, M., Nylén, E. (1986). Effects of pulp mill chlorate (CIO 3 ) on Fucus vesiculosus — a summary of projects. Ophelia 4 (Suppl.): 219–224

    Google Scholar 

  • Russell, G. (1988). The seaweed flora of a young semi-enclosed sea: The Baltic. Salinity as a possible agent of flora divergence. Helgoländer wiss. Meeresunt. 42: 243–250

    Google Scholar 

  • Salisbury, F. B., Ross, C. W. (1985). Plant physiology. 3rd Edn. Wadsworth Publishing Company, Belmont, California

    Google Scholar 

  • Scanlan, C. M., Wilkinson, M. (1987). The use of seaweeds in biocide toxicity testing, Part 1. The sensitivity of different stages in the life-history of Fucus and of other algae, to certain biocides. Mar. envirl Res. 21: 11–29

    Google Scholar 

  • Tedengren, M., Arner, M., Kautsky, N. (1988). Ecophysiology and stress response of marine and brackish water Gammarus species (Crustacea, Amphipoda) to changes in salinity and exposure to cadmium and diesel oil. Mar. Ecol. Prog. Ser. 47: 107–116

    Google Scholar 

  • Tedengren, M., Kautsky, N. (1987). Comparative stress response to diesel oil and salinity changes of Mytilus edulis from the North and Baltic Seas. Ophelia 28(1): 1–19

    Google Scholar 

  • Wilson, T. R. S. (1975). Salinity and the major elements of sea water. In: J. P. Riley, Skirrow, G. (eds.) Chemical oceanography. Academic Press, London, p. 43

    Google Scholar 

  • Wright, P. J., Reed, R. H. (1990). Effects of osmotic stress on gamete size, rhihoid initiation and germling growth in Fucoid algae. Br. phycol. J. 25: 149–155

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by T. Fenchel, Helsingør

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, S., Kautsky, L. & Kautsky, N. Effects of salinity and bromine on zygotes and embryos of Fucus vesiculosus from the Baltic Sea. Marine Biology 114, 661–665 (1992). https://doi.org/10.1007/BF00357263

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00357263

Keywords

Navigation