Skip to main content
Log in

Response of embryos of the sea urchin Strongylocentrotus purpuratus to aqueous petroleum waste includes the expression of a high molecular weight glycoprotein

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The present study investigated the sublethal effects of the largest aqueous waste associated with offshore oil development, produced water (PW), on sea urchin embryo development. PW inhibited normal gastrulation in purple sea urchin (Strongylocentrotus purpuratus) embryos exposed at the hatching stage. The exposed embryos did not form complete archenterons, and secondary mesenchyme cells exhibited an unusual behavior with respect to the wall of the blastocoelic cavity. In addition, an abundance of extracellular matrix was observed in the blastocoelic cavities in the embryos exposed to higher concentrations of PW. An inhibition of the development of embryos through the pluteus stage was observed as a result of PW exposure. This was manifested by inhibition of normal spicule formation with concomitant abnormal pluteus morphology. To determine if a biochemical stress response occurs as a result of PW exposure, embryos at the early gastrula stage were exposed to PW for 2 h, followed by an additional 1 h in 3H-leucine and PW. These embryos expressed a 253 kDa protein as observed by one-dimensional SDS (sodium dodecyl sulfate) polyacrylamide gel electrophoresis and autoradiography. This protein could occasionally be observed in gels stained for protein, and was glycosylated as demonstrated by staining with periodic acid Schiff (PAS). The 70 to 73 kDa heat-shock proteins previously described in sea urchin embryos (and other organisms) as a result of stress were not synthesized as a result of PW exposure. Heat shock did not induce synthesis of the 253 kDa glycoprotein. Combined PW and heat-shock exposure elicited both the heat-shock response (73 kDa protein) as well as expression of the 253 kDa glycoprotein. These data demonstrate the use of expression of endogenous macromolecular markers to distinguish exposures of embryos to different perturbations. Arsenic (as sodium arsenite), a metal constituent of PW, also induced the 253 kDa glycoprotein in early gastrula-stage embryos. We suggest that this glycoprotein may be a marker for PW (and a metal constituent) exposure in sea urchin embryos, and may be related to morphological abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Boehm, P. D. (1987). Transport and transformation processes regarding hydrocarbon and metal pollutants in offshore sedimentary environments. In: Boesch, D. F., Rabalais, N. N. (eds.) Long-term environmental effects of offshore oil and gas development. Elsevier Applied Science, New York p. 233–286

    Google Scholar 

  • Boon-Niermeijer, E. K., Tuyl, M., VanderScheur, H. (1986). Evidence for two states of thermal tolerance. Int. J. Hyperthermia 2: 93–105

    Google Scholar 

  • Burke, R. D., Tamboline, C. R. (1990). Ontogeny of an extracellular matrix component of sea urchins and its role in morphogenesis. Dev. Growth Differentiation 32: 461–471

    Google Scholar 

  • Caltabiano, M. M., Koestler, T. P., Poste, G., Greig, R. G. (1986). Induction of 32 and 34-kDa stress proteins by sodium arsenite, heavy metals, and thiol-reactive agents. J. biol. Chem. 28: 13381–13386

    Google Scholar 

  • Cavanaugh, G. M. (ed.) (1956). Formulae and methods of the Marine Biological Laboratory Chemical Room. (6th ed.) Marine Biological Laboratory, Woods Hole

    Google Scholar 

  • Cherr, G. N., Summers, R. G., Baldwin, J. D., Morrill, J. B. (1992). Preservation and visualization of the sea urchin embryo blastocoelic extracellular matrix. Microscopy Res. Techn. 22: 11–22

    Google Scholar 

  • Debec, A., Courgeon, A.-M., Maingourd, M., Maisonhaute, C. (1990). The response of the centrosome to heat shock and related stresses in a Drosophila cell line. J. Cell Sci. 96: 403–412

    Google Scholar 

  • Gunther, A. J., Davis, J. A., O'Connor, J. M., Phillips, D. J. H., Kramer, K. S., Richardson, B. J. (1990). Status und trends report on dredging and waterway modification in the San Francisco Estuary, San Francisco Estuary Project. Aquatic Habitat Institute, San Francisco

    Google Scholar 

  • Hamer, D. H. (1986). Metallothionein. A. Rev. Biochem. 55: 913–951

    Google Scholar 

  • Harkey, M. A., Whiteley, A. H. (1980). Isolation, culture and differentiation of echinoid primary mesenchyme cells. Wilhelm Roux Arch. EntwMech. Org. 189: 111–122

    Google Scholar 

  • Hay, E. D. (1984). Cell-matrix interactions in the embryo: cell shape, cell surface, cell skeletons, and their role in differentiation. In: Trelstad, R. L. (ed.) The role of extracellular matrix in development. A. R. Liss, Inc., New York, p. 1–13

    Google Scholar 

  • Higashi, R. M., Cherr, G. N., Bergens, C. A., Fan, T. W.-M., Crosby, D. G. (1992). Toxicant isolation from a produced water source in the Santa Barbara Channel. In: Ray, J. (ed) Proceedings of the 1992 International Produced Water Symposium at San Diego, California. Plenum Press, New York (in press)

    Google Scholar 

  • Kim, K. S., Kim, Y. K., Naftolin, F., Markert, C. L. (1987). Synthesis of stress proteins during normal and stressed development of mouse embryos. In: McLachlan, J. A., Pratt, R. M., Markert, C. L. (eds.) Developmental toxicology: mechanisms and risk. Cold Spring Harbor Laboratory, Cold Spring Harbor, p. 123–136 (Banbury Rep. No. 26)

    Google Scholar 

  • Kelley, P. M., Schelesinger, M. J. (1982). Antibodies to two major chicken heat shock proteins cross-react with similar proteins in widely divergent species. Molec. cell. Biol. 2: 267–274

    Google Scholar 

  • Konat, G., Offner, H., Mellah, J. (1984). Improved sensitivity for detection and quantitation of glycoprotein on pyacrylamide gels. Experimentia 40: 303–304

    Google Scholar 

  • Lane, M. C., Solursh, M. (1988). Dependence of sea urchin primary mesenchyme cell migration on xyloside-and sulfate-sensitive cell surface-associated components. Devl Biol 127: 78–87

    Google Scholar 

  • Lane, M. C., Solursh, M. (1991). Primary mesenchyme cell migration requires a chondroitin sulfate/dermatan sulfate proteoglycan. Devl Biol. 143: 389–397

    Google Scholar 

  • Lerch, K. (1980). Copper metallothionein, a copper-binding protein from Neurospora crassa. Nature, Lond. 284: 368–370

    Google Scholar 

  • Luoma, S., Phillips, D. (1988). Distribution, variability, and impacts of trace elements in San Francisco Bay. Mar. Pollut. Bull. 19: 405–413

    Google Scholar 

  • McCarthy, J. F., Shugart, L. R. (1990). Biological markers of environmental contamination. In: McCarthy, J. F., Shugart, L. R. (eds.) Biomarkers of environmental contamination. Lewis Publishers, CRC Press, Boca Raton, Florida, p. 3–14

    Google Scholar 

  • Neff, J. M. (1987). Biological effects of drilling fluids, drill cuttings and produced waters. In: Boesch, D. F., Rabalais, N. N. (eds.) Long-term environmental effects of offshore oil and gas development. Elsevier Applied Science, New York, p. 469–538

    Google Scholar 

  • Neff, J. M., Rabalais, N. N., Boesch, D. (1987). Offshore oil and gas development activities potentially causing long-term environmental effects. In: Boesch, D. F., Rabalais, N. N. (eds) Longterm environmental effects of offshore oil and gas development. Elsevier Applied Science, New York, p. 149–173

    Google Scholar 

  • Nemer, M., Travaglini, E. C., Rondinelli, E., D'Alonzo, J. (1984). Developmental regulation induction and embryonic tissue specificity of sea urchin Strongylocentrotus purpuratus. Devl Biol. 102: 471–482

    Google Scholar 

  • Roccheri, M. C., DiBernardo, M. G., Giudice, G. (1981a). Synthesis of heat-shock proteins in developing sea urchins. Devl Biol. 83: 173–177

    Google Scholar 

  • Roccheri, M. C., LaRosa, M., Ferraro, M. G., Cantone, M., Cascino, D., Giudice, G., Sconzo, G. (1988). Stress proteins by zinc ions in sea urchin embryos. Cell Differentiation 24: 209–214

    Google Scholar 

  • Roccheri, M. C., Sconzo, G., DiBernardo, M. G., Albanese, I., DiCarlo, M., Giudice, G. (1981b). Heat shock proteins in sea urchin embryos. Territorial and intracellular location. Acta Embryol. Morph. exp. (New Ser.) 2: 91–100

    Google Scholar 

  • Sanders, B. (1990). Stress proteins: potential as multitiered biomarkers. In: McCarthy, J. F., Shugart, L. R. (eds.) Biomarkers of environmental contamination. Lewis Publishers, CRC Press, Boca Raton, Florida, p. 165–191

    Google Scholar 

  • Schlesinger, M. J., Collier, N. C., Agell, N., Bond, U. (1989). Molecular events in avian cells stressed by heat shock and arsenite. In: Pardue, M. L., Feramisco, J. R., Lindquist, S. (eds.) Stress-induced proteins. A. R., Inc., New York, Liss p. 127–148

    Google Scholar 

  • Sconzo, G., Roccheri, M. C., Dicarlo, M., DiBernardo, M. G., Giudice, G. (1983). Synthesis of heat shock proteins in dissociated sea urchin embryonic cells. Cell Differentiation 12: 317–320

    Google Scholar 

  • Sconzo, G., Roccheri, M. C., La Rosa, M., Oliva, D., Abrignani, A., Giudice, G. (1986). Acquisition of thermotolerance in sea urchin embryos correlates with the synthesis and age of the heat shock proteins. Cell Differentiation 19: 173–177

    Google Scholar 

  • Solursh, M. (1986). Migration of sea urchin primary mesenchyme cells. In: Browder, L. (ed.) Developmental biology: a comprehensive synthesis. Plenum Press, New York, p. 391–431

    Google Scholar 

  • Strathmann, M. F. (1987). Reproduction and developmental of marine invertebrates of the northern Pacific coast. University of Washington Press, Washington, D.C.

    Google Scholar 

  • Straughan, D. (1976). Sublethal effects of natural chronic exposure of petroleum in the marine environment. Publs Am. Petrol. Inst. 4280: 1–119

    Google Scholar 

  • subjeck, J. R., Shyy, T.-T. (1986). Stress protein systems of mammalian cells. Am. J. Physiol. 250 (Cell. Physiol. 19): C1-C17

    Google Scholar 

  • Taketani, S., Kohno, H., Yoshinaga, T., Tokunaga, R. (1989). The human 32-kDa stress protein induced by exposure to arsenite and cadmium ions is heme oxygenase. Fedn eur. biochem. Soc. (FEBS) Lett 245: 173–176

    Google Scholar 

  • Viarengo, A., Pertica, M., Mancinelli, G., Zanicchi, G., Orunesu, M. (1980). Rapid induction of copper-binding proteins in the gills of metal exposed mussels. Comp. Biochem. Physiol 67C: 215–218

    Google Scholar 

  • Welch, W. J., Feramisco, J. R., Blose, S. H. (1985). The mammalian stress response and the cytoskeleton: alterations in intermediate filaments. Ann. N.Y. Acad. Sci 455: 57–67

    Google Scholar 

  • Welch, W. J., Mizzen, L. A. Arrigo, A.-P. (1989). Structure and function of mammalian stress proteins. In: Pardue, M. L., Feramisco, J. R., Lindquist, S. (eds.) Stress-induced proteins. A. R. Liss. Inc., New York, p. 187–202

    Google Scholar 

  • Wessel, G. M., Marchase, R. B., McClay, D. R. (1984). Ontogeny of the basal lamina in the sea urchin embryo. Devl Biol 103: 235–245

    Google Scholar 

  • Wessel, G. M., McClay, D. R. (1987). Gastrulation in the sea urchin embryo requires the deposition of crosslinked collagen within the extracellular matrix. Devl Biol. 121: 149–165

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. G. Hadfield, Honolulu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldwin, J.D., Pillai, M.C. & Cherr, G.N. Response of embryos of the sea urchin Strongylocentrotus purpuratus to aqueous petroleum waste includes the expression of a high molecular weight glycoprotein. Marine Biology 114, 21–30 (1992). https://doi.org/10.1007/BF00350852

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350852

Keywords

Navigation