Skip to main content
Log in

Lack of avoidance of phenolic-rich brown algae by tropical herbivorous fishes

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

High levels of polyphloroglucinol phenolics in marine brown algae are usually interpreted as a defensive response to herbivory. However, tropical brown algae generally contain very low levels of phenolics, even though herbivory in many tropical systems (e.g. coral reefs) is intense. This apparent paradox would be explained if polyphenolics did not deter tropical herbivores, in which case selection by herbivores for high levels of phenolics in tropical algae would be weak. To examine this hypothesis, in February 1989 we presented mixed assemblages of herbivorous fishes on the Great Barrier Reef with tropical, phenolic-poor brown algae (primarilySargassum spp.) and closely related (conspecifics in one instance) phenolic-rich temperate species. Different species of brown algae were eaten at very different rates, but these differences were not correlated with variation in the phenolic levels among the plants. TLC and NMR analyses showed no evidence of other, non-polar, metabolites in these algae, with the exception of the temperate speciesHomoeostrichus sinclairii. Thus, variation in non-polar metabolites also did not explain the differences in susceptibility to herbivores among these algae. We conclude that the herbivorous fishes studied here were not deterred by phenolic-rich algae, which suggests that levels of phenolics in many tropical algae may generally be low due to their ineffectiveness as defences. However, alternative explanations for the pattern are possible, and these are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Bakus, G. J., Green, G. (1974). Toxicity in sponges and holothurians: a geographic pattern. Science, N.Y. 185: 951–952

    Google Scholar 

  • Bakus, G. J., Targett, N. M., Schulte, B. (1986). Chemical ecology of marine organisms: an overview. J. chem. Ecol. 12: 951–985

    Google Scholar 

  • Bernays, E. A., Cooper-Driver G., Bilgener, M. (1989). Herbivores and plant tannins. Adv. ecol. Res. 19: 263–302

    Google Scholar 

  • Brock, R. E. (1982). A critique of the visual census method for assessing coral reef populations. Bull. mar. Sci. 32: 269–276

    Google Scholar 

  • Bryant, J., Chapin, III, F. S., Klein, D. R. (1983). Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40: 357–368

    Google Scholar 

  • Carpenter, R. (1986). Partitioning herbivory and its effects on coral reef algal communities. Ecol. Monogr. 56: 345–363

    Google Scholar 

  • Coley, P. D., Bryant, J. P., Chapin, F. S. (1985). Resource availability and plant antiherbivore defense. Science, N. Y. 230: 895–899

    Google Scholar 

  • Coll, J. C., Bowden, B. F. (1986). The application of vacuum liquid chromatography to the separation of terpene mixtures. J. nat. Products (Lloydia) 49: 934–936

    Google Scholar 

  • Day, R. W., Quinn, G. P. (1989). Comparisons of treatments after an analysis of variance in ecology. Ecol. Monogr. 59: 433–463

    Google Scholar 

  • Denton, G. R. W., Burdon-Jones, C. (1986). Trace metals in waters of the Great Barrier Reef. Mar. Pollut. Bull. 17: 95–98

    Google Scholar 

  • Estes, J. A., Steinberg, P. D. (1988). Predation, herbivory and kelp evolution. Paleobiology 14: 19–36

    Google Scholar 

  • Faulkner, D. J. (1984). Marine natural products: metabolites of marine algae and herbivorous marine mollusks. Nat. Product. Rep. 1: 251–280

    Google Scholar 

  • Faulkner, D. J. (1986). Marine natural products. Nat. Product. Rep. 3: 1–33

    Google Scholar 

  • Fenical, W. (1980). Distributional and taxonomic features of toxinproducing marine algae. In: Abbott, I. A., Foster, M. S., Eklund, L. F. (eds.) Pacific seaweed aquaculture. California Sea Grant College Program, Institute of Marine Resources, University of California, La Jolla, California, USA, p. 144–151

    Google Scholar 

  • Fowler, A. J. (1987). The development of sampling strategies for population studies of coral reef fishes. A case study. Coral Reefs 6: 49–58

    Google Scholar 

  • Gaines, S. D., Lubchenco, J. (1982). A unified approach to marine plant-herbivore interactions. II. Biogeography. A. Rev. Ecol. Syst. 13: 111–138

    Google Scholar 

  • Geiselman, J. A., McConnell, O. J. (1981). Polyphenols in the brown algaeFucus vesiculosus andAscophyllum nodosum: chemical defenses against the herbivorous snailLittorina littorea. J. chem. Ecol. 7: 1115–1133

    Google Scholar 

  • Green, G. (1977). Ecology of toxicity in marine sponges. Mar. Biol. 40: 207–215

    Google Scholar 

  • Hatcher, B. G., Larkum, A. W. D. (1983). An experimental analysis of factors controlling the standing crop of the epilithic algal community on a coral reef. J. exp. mar. Biol. Ecol. 69: 61–84

    Google Scholar 

  • Hay, M. E. (1981). The functional morphology of turf-forming seaweeds: persistence in stressful marine habitats. Ecology 62: 739–750

    Google Scholar 

  • Hay, M. E. (1984). Predictable spatial escapes from herbivory: how do these affect the evolution of herbivore resistance in tropical marine communities? Oecologia 64: 396–407

    Google Scholar 

  • Hay, M. E. (1985). Spatial patterns of herbivore impact and their importance in maintaining algal species richness. Proc. 5th int. coral Reef Congr. 4: 29–34. [Gabrié, C. et al. (eds.) Antenne Museum-EPHE, Moorea, French Polynesia]

    Google Scholar 

  • Hay, M. E., Duffy, J. E., Fenical, W., Gustafason, K. (1988). Chemical defense in the seaweedDictyopteris delicatula: differential effects against reef fishes and amphipods. Mar. Ecol. Prog. Ser. 48: 185–192

    Google Scholar 

  • Hay, M. E., Fenical, W. (1988). Marine plant-herbivore interactions: the ecology of chemical defense. A. Rev. Syst. Ecol. 19: 111–145

    Google Scholar 

  • Hay, M. E., Fenical, W., Gustafason, K. (1987). Chemical defense against diverse coral-reef herbivores. Ecology 68: 1581–1592

    Google Scholar 

  • Horn, M. H. (1989). Biology of marine herbivorous fishes. Oceanogr. mar. Biol. A. Rev. 27: 167–272

    Google Scholar 

  • Ilvessalo, H., Tuomi, J. (1989). Nutrient availability and accumulation of phenolic compounds in the brown algaFucus vesiculosus. Mar. Biol. 101: 115–119

    Google Scholar 

  • Johnson, C. R., Mann, K. H. (1986). The importance of plant defense abilities to the structure of seaweed comunities: the kelpLaminaria longicruris de la Pylaie survives grazing by the snailLacuna vincta (Montagu) at high population densities. J. exp. mar. Biol. Ecol. 97: 231–267

    Google Scholar 

  • Kato, T., Kumanireng, A. S., Ichinose, I., Kitihara, Y., Kakinada, Y., Kato, Y. (1975). Structure and synthesis of active component from a marine alga,Sargassum tortile, which inhibits the settling of swimming larvae ofCoryne uchidai. Chemy Lett. (Chem. Soc. Japan, Tokyo) 1975: 335–338

    Google Scholar 

  • Lewis, S. M., Norris, J. N., Searles, R. B. (1987). The regulation of morphological plasticity by herbivory. Ecology 68: 636–641

    Google Scholar 

  • Littler, M. M., Taylor, P. R., Littler, D. S. (1983). Algal resistance to herbivory on a Caribbean barrier reef. Coral Reefs 5: 63–71

    Google Scholar 

  • Mayer, A. M., Harel, E. (1979). Polyphenol oxidases in plants. Phytochem. 18: 193–215

    Google Scholar 

  • McClure, J. W. (1978). The physiology of phenolic compounds in plants. Recent Adv. Phytochem. 12: 525–556

    Google Scholar 

  • Padilla, D. K. (1985). Structural resistance of algae to herbivores. A biomechanical approach. Mar. Biol. 90: 103–109

    Google Scholar 

  • Paul, V. J., Fenical, W. (1987). Natural products chemistry and chemical defense in tropical marine algae of the phylum Chlorophyta. In: Scheuer, P. S. (ed.) Bioorganic marine chemistry. Springer-Verlag, Heidelberg, p. 1–29

    Google Scholar 

  • Paul, V. J., Hay, M. E. (1986). Seaweed susceptibility to herbivory: chemical and morphological correlates. Mar. Ecol. Prog. Ser. 33: 255–264

    Google Scholar 

  • Ragan, M. A., Glombitza, K.-W. (1986). Phlorotannins, brown algal polyphenols. Prog. phycol. Res. 4: 129–241

    Google Scholar 

  • Ragan, M. A., Jensen, A. (1977). Quantitative studies on brown algal polyphenols. I. Estimation of absolute polyphenol-content ofAscophyllum nodosum (L.) andFucus vesiculosus (L.) J. exp. mar. Biol. Ecol. 34: 245–258

    Google Scholar 

  • Renaud, P. E., Hay, M. E., Schmitt, T. (1990). Interactions of plant stress and herbivory: interspecific variation in the susceptibility of a palatable vs an unpalatable seaweed to sea urchin grazing. Oecologia 82: 217–226

    Google Scholar 

  • Rhoades, D. (1979). Evolution of plant defenses against herbivory. In: Rosenthal, G. A., Janzen, D. H. (eds.) Herbivores. Academic Press, New York

    Google Scholar 

  • Russ, G. (1984). Distribution and abundance of herbivorous grazing fishes in the central Great Barrier Reef. I. Levels of variability across the entire continental shelf. Mar. Ecol. Prog. Ser. 20: 23–34

    Google Scholar 

  • Scott, F., Russ, G. (1987). Effects of grazing on species composition of the epilithic algal community on coral reefs of the Central Great Barrier Reef. Mar. Ecol. Prog. Ser. 39: 293–304

    Google Scholar 

  • Shizuru, Y., Matsukawa, S., Ojika, M., Yamada, K. (1982). Two new farnesylacetone derivatives from the brown algaSargassum micracanthum. Phytochem. 21: 1808–1809

    Google Scholar 

  • Steinberg, P. D. (1985). Feeding preferences ofTegula funebralis and chemical defenses in marine brown algae. Ecol. Monogr. 55: 333–349

    Google Scholar 

  • Steinberg, P. D. (1986). Chemical defenses and the susceptibility of tropical marine algae to herbivores. Oecologia 69: 628–630

    Google Scholar 

  • Steinberg, P. D. (1988). The effects of quantitative and qualitative variation in phenolic compounds on feeding in three species of marine invertebrate herbivores. J. exp. mar. Biol. Ecol. 120: 221–237

    Google Scholar 

  • Steinberg, P. D. (1989). Biogeographical variation in brown algal polyphenolics and other secondary metabolites: comparison between temperate Australasia and North America. Oecologia 78: 373–382

    Google Scholar 

  • Steinberg, P. D., Paul, V. J. (1990). Fish feeding and chemical defenses of tropical brown algae in Western Australia. Mar. Ecol. Prog. Ser. 58: 253–259

    Google Scholar 

  • Steinberg, P. D., van Altena, I. A. (1991). Tolerance of marine invertebrate herbivores to brown algal phlorotannins in temperate Australasia. Ecol. Monogr. (in press)

  • Steneck, R. S. (1983). Escalating herbivory and resulting adaptive trends in calcareous algal crusts. Paleobiology 9: 44–61

    Google Scholar 

  • Steneck, R. S. (1986). The ecology of coralline algal crusts: convergent patterns and adaptive strategies. A. Rev. Ecol. Syst. 17: 273–303

    Google Scholar 

  • Swain, T., Hillis, W. E. (1959). The phenolic constituents ofPrunus domesticus. I. The quantitative analysis of phenolic constituents. J. Sci. Fd Agric. 10: 63–68

    Google Scholar 

  • Targett, N. M., Targett, T. E., Vrolijk, N. H., Ogden, J. C. (1986). Effect of macrophyte secondary metabolites on feeding preferences of the herbivorous parrotfishSparisoma radians. Mar. Biol. 92: 141–148

    Google Scholar 

  • Van Alstyne, K. L. (1988). Herbivore grazing increases polyphenolic defenses in the intertidal brown algaFucus distichus. Ecology 69: 655–663

    Google Scholar 

  • Van Alstyne, K. L., Paul, V. J. The biogeography of polyphenolic compounds in marine macroalgae: temperate brown algal defenses deter feeding by tropical herbivorous fishes. Oecologia (in press)

  • Vermeij, G. J. (1978). Biogeography and adaptation. Harvard Press, Cambridge, Massachusetts, USA

    Google Scholar 

  • Womersley, H. B. S. (1987). The marine benthic flora of South Australia. Part II. South Australian Government Printing Division, Adelaide, Southern Australia, Australia

    Google Scholar 

  • Wylie, C. R., Paul, V. J. (1988). Feeding preferences of the surgeonfishZebrasoma flavascens in relation to chemical defenses of tropical algae. Mar. Ecol. Prog. Ser. 45: 23–32

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. F. Humphrey, Sydney

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinberg, P.D., Edyvane, K., de Nys, R. et al. Lack of avoidance of phenolic-rich brown algae by tropical herbivorous fishes. Mar. Biol. 109, 335–343 (1991). https://doi.org/10.1007/BF01319401

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01319401

Keywords

Navigation