Skip to main content
Log in

What happens to zooplankton faecal pellets? Implications for material flux

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Copepod faecal pellets have often been considered as rapid transporters of material out of the euphotic zone. Laboratory experiments on their degradation and sinking rates support this view, but field data on the distribution and flux of pellets through the water colomn present contradictory evidence. We suggest that due to the exclusion of metazoans from previously published degradation experiments, such studies may have little relevance to the natural environments. In 1987/1988 we carried out experiments using adult copepods of mixed species but dominated byCentropages hamatus collected in Kiel Bight (FRG). We have demonstrated that copepods can be highly adept at breaking up their own pellets while ingesting only a small proportion, a behaviour we define as “coprorhexy”. The microbiota is probably unable to cause significant modification to faecal pellets before they are fragmented within a few hours of their production. Thereafter, microbial remineralisation will become important. Many of the “difficult” field data can be readily explained if the process of coprorhexy is taken into account and, indeed, breakage of large particles by crustacean zooplankton may be an important process in modifying material transport in the ocean. Copepods appear to perform coprorhexy by removing the peritrophic membrane with its attached bacterial flora and this may then be ingested. We speculate on the nutritional value of such a behaviour and the possible significance of “ghost” pellets, consisting of a membrane with little or no apparent solid content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Alldredge, A. L., Cohen, Y. (1987). Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets. Science, N.Y. 235: 689–691

    Google Scholar 

  • Alldredge, A. L., Gotschalk, C. C., MacIntyre, S. (1987). Evidence for sustained residence of macrocrustacean fecal pellets in surface waters off southern California. Deep-Sea Res. 34: 1641–1652

    Google Scholar 

  • Andrews, C. C., Karl, D. M., Small, L. F., Fowler, S. W. (1984). Metabolic activity and bioluminescence of oceanic faecal pellets and sediment trap particles. Nature, Lond. 307 (5951): 539–541

    Google Scholar 

  • Angel, M. V. (1984). Detrital organic fluxes through pelagic ecosystems. In: Fasham, M. (ed.) Flows of energy and materials in marine ecosystems. Plenum Press, New York, p. 475–516

    Google Scholar 

  • Bathmann, U., Liebezeit, G. (1986). Chlorphyll in copepod faecal pellets: changes in pellet numbers and pigment content during a declining Baltic spring bloom. Pubbl. Staz. zool. Napoli (I: Mar. Ecol.) 7: 59–73

    Google Scholar 

  • Bathmann, U., Noji, T. T., Voss, M., Peinert, R. (1987). Copepod fecal pellets: abundance, sedimentation and content at a permanent station in the Norwegian Sea in May/June 1986. Mar. Ecol. Prog. Ser. 38: 45–51

    Google Scholar 

  • Bienfang, P. K. (1980). Herbivore diet affects fecal pellet settling. Can. J. Fish. aquat. Sciences 37: 1352–1357

    Google Scholar 

  • Bishop, J. K. B., Collier, R. W., Ketten, D. R., Edmond, J. M. (1980). The chemistry, biology, and vertical flux of particulate matter from the upper 1 500 m of the Panama Basin. Deep-Sea Res. 27: 615–640

    Google Scholar 

  • Bishop, J. K. B., Edmond, J. M., Ketten, D. R., Bacon, M. P., Silker, W. B. (1977). The chemistry, biology and vertical flux of particulate matter from the upper 400 m of the equatorial Atlantic Ocean. Deep-Sea Res. 24: 511–548

    Google Scholar 

  • Cho, B. C., Azam, F. (1988). Major role of bacteria in biogeochemical fluxes in the ocean's inertia. Nature, Lond. 322: 441–443

    Google Scholar 

  • Conover, R. J. (1966). Assimilation of organic matter by zooplankton. Limnol. Oceanogr. 11: 338–345

    Google Scholar 

  • Conover, R. J., Francis, V. (1973). The use of radioactive isotopes to measure the transfer of materials in aquatic food chains. Mar. Biol. 18: 272–283

    Google Scholar 

  • Corner, E. D. S., O'Hara, S. C. M., Neal, A. C., Eglinton, G. (1986). Copepod faecal pellets and the vertical flux of biolipids. In: Corner, E.D.S., O'Hara, S. C. M. (eds.) The biological chemistry of marine copepods. Clarendon Press, Oxford, p. 260–321

    Google Scholar 

  • Deuser, W. G., Ross, E. H., Anderson, R. F. (1981). Seasonality in the supply of sediment to the deep Sargasso Sea and implications for the rapid transfer of matter to the deep ocean. Deep-Sea Res. 28A: 495–505

    Google Scholar 

  • Dugdale, R. C., Goering, J. J. (1967). Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12: 196–206

    Google Scholar 

  • Dunbar, R. B., Berger, W. (1981). Fecal pellet flux to modern bottom sediments of Santa Barbara Basin (California) based on sediment trapping. Bull. geol. Soc. Am. 92: 212–218

    Google Scholar 

  • Emerson, C. W., Roff, J. C. (1987). Implications of fecal pellet size and zooplankton behavior to estimates of pelagic-benthic carbon flux. Mar. Ecol. Prog. Ser. 35: 251–257

    Google Scholar 

  • Eppley, R. W., Peterson, B. J. (1979). Particulate organic matter flux and planktonic new production in the deep ocean. Nature, Lond. 282: 677–680

    Google Scholar 

  • Frankenberg, D., Smith, K. L. (1967). Coprophagy in marine animals. Limnol. Oceanogr. 12: 443–450

    Google Scholar 

  • Frost, B. W. (1972). Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepodCalanus pacificus. Limnol. Oceanogr. 17: 805–815

    Google Scholar 

  • Gamble, J. C. (1978). Copepod grazing during a declining spring phytoplankton bloom in the Northern North Sea. Mar. Biol. 49: 303–315

    Google Scholar 

  • Gauld, D. T. (1951). The grazing rate of planktonic copepods. J. mar. biol. Ass. U. K. 29: 695–706

    Google Scholar 

  • Gauld, D. T. (1957). A peritrophic membrane in calanoid copepods. Nature, Lond. 179: 325–326

    Google Scholar 

  • Gowing, M. M., Silver, M. W. (1983). Origins and microenvironments of bacteria mediating fecal pellet decomposition in the sea. Mar. Biol. 73: 7–16

    Google Scholar 

  • Honjo, S., Roman, M. R. (1978). Marine copepod fecal pellets: production, preservation and sedimentation. J. mar. Res. 36: 45–57

    Google Scholar 

  • Ikeda, T. (1970). Relationship between respiratory rate and body size in marine planktonic animals as a function of the temperature of habitat. Bull. Fac. Fish. Hokkaido Univ. 21: 91–112

    Google Scholar 

  • Jacobsen, T. R., Azam, F. (1984). Role of bacteria in copepod fecal pellet decomposition, colonisation: growth rates and mineralisation. Bull. mar. Sci. 35: 495–502

    Google Scholar 

  • Karl, D. M., Knauer, G. A., Martin, J. H. (1988). Downward flux of particulate organic matter in the ocean: a particle decomposition paradox. Nature, Lond. 332: 438–441

    Google Scholar 

  • Komar, P. D., Morse, A. P., Small, L. F. (1981). An analysis of sinking rates of natural copepod and euphausiid fecal pellets. Limnol Oceanogr. 26: 172–180

    Google Scholar 

  • Krause, M. (1981). Vertical distribution of fecal pellets during FLEX'76. Helgoländer Meeresunters. 34: 313–328

    Google Scholar 

  • Lam, R. K., Frost, B. W. (1976). Model of copepod filtering response to changes in size and concentration of food. Limnol. Oceanogr. 21: 490–500

    Google Scholar 

  • Lampitt, R. S. (1985). Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension. Deep-Sea Res. 32: 885–897

    Google Scholar 

  • Lampitt, R. S., Gamble, J. C. (1982). Diet and respiration of the small planktonic marine copepodOithona nana. Mar. Biol. 66: 185–190

    Google Scholar 

  • Landry, M. R. (1981). Switching between herbivory and carnivory by the planktonic marine copepodCalanus pacificus. Mar. Biol. 65: 77–82

    Google Scholar 

  • Le Borgne, R. (1982). Zooplankton production in the eastern tropical Atlantic Ocean: net growth efficiency and P:B in terms of carbon, nitrogen and phosphorus. Limnol. Oceanogr. 27: 681–698

    Google Scholar 

  • Marshall, S. M., Orr, A. P. (1955). The biology of a marine copepod. Oliver & Boyd, Edinburgh

    Google Scholar 

  • Martin, J. H., Knauer, G. A., Karl, D. M., Broenkow, W. W. (1987). VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res. 34: 267–285

    Google Scholar 

  • McCave, I. N. (1975). Vertical flux of particles in the ocean. Deep-Sea Res. 22: 491–502

    Google Scholar 

  • Morales, C. E. (1987). Carbon and nitrogen content of copepod faecal pellets: effect of food concentration and feeding behavior. Mar. Ecol. Prog. Ser. 36: 107–114

    Google Scholar 

  • Paffenhöfer, G. A., Knowles, S. C. (1979). Ecological implications of fecal pellet size, production and consumption by copepods. J. mar. Res 37: 35–49

    Google Scholar 

  • Paffenhöfer, G. A., Strickland, J. D. H. (1970). A note on the feeding ofCalanus helgolandicus on detritus. Mar. Biol. 5: 97–99

    Google Scholar 

  • Parsons, T. R., Takahashi, M., Hargrave, B. (1984) Biology oceanographic processes. Pergamon Press, Oxford

    Google Scholar 

  • Peduzzi, P., Herndl, G. J. (1986). Role of bacteria in decomposition of faecal pellets egested by the epiphyte-grazing gastropodGibbula umbilicaris. Mar. Biol 92: 417–424

    Google Scholar 

  • Peinert, R., Bathmann, U., Bodungen, B. von, Noji, T. (1987). The impact of grazing on spring phytoplankton growth and sedimentation in the Norwegian current. Mitt. geol.-paläont. Inst. Univ. Hamb. 62: 149–164

    Google Scholar 

  • Pilskaln, C. H., Honjo, S. (1987). The fecal pellet fraction of biogeochemical particle fluxes to the deep sea. Global biogeochem. Cycles 1: 31–38

    Google Scholar 

  • Poulet, S. A. (1974). Seasonal grazing ofPseudocalanus minutes on particles. Mar. Biol 25: 109–123

    Google Scholar 

  • Smetacek, V. (1980). Zooplankton standing stock, copepod fecal pellets and particulate detritus in Kiel Bight. Estuar. cstl mar. Sci. 11: 470–490

    Google Scholar 

  • Steele, J. H., Baird, I. E. (1972). Sedimentation of organic matter in a Scottish sea loch. Memorie Ist. ital. Idrobiol. 29 (Suppl.): 73–88. (Proceedings of the IBP-UNESCO Symposium on detritus and its role in aquatic ecosystems, Pallanza, Italy, May 23–37, 1972)

    Google Scholar 

  • Tande, K. S., Slagstad, D. (1985). Assimilation efficiency in herbivorous aquatic organisms the potential of the ratio method using 14-C and biogenic silica as markers. Limnol. Oceanogr. 30: 1093–1099

    Google Scholar 

  • Turner, J. T. (1979). Microbial attachment to copepod fecal pellets and its possible ecological significance. Trans. Am. microsc. Soc. 98: 131–135

    Google Scholar 

  • Zeuthen, E. (1953). Oxygen uptake as related to body size in organisms. Q. Rev. Biol. 28: 1–12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Mauchline, Oban

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lampitt, R.S., Noji, T. & von Bodungen, B. What happens to zooplankton faecal pellets? Implications for material flux. Mar. Biol. 104, 15–23 (1990). https://doi.org/10.1007/BF01313152

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313152

Keywords

Navigation