Skip to main content
Log in

Positivity and monotonicity properties ofC 0-semigroups. I

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

If exp {−tH}, exp {−tK}, are self-adjoint, positivity preserving, contraction semigroups on a Hilbert space ℋ=L 2(X;dμ) we write

$$e^{ - tH} \succcurlyeq e^{ - tK} \succcurlyeq 0$$
((*))

whenever exp {−tH}-exp {−tK} is positivity preserving for allt≧0 and then we characterize the class of positive functions for which (*) always implies

$$e^{ - tf(H)} \succcurlyeq e^{ - tf(K)} \succcurlyeq 0.$$

This class consists of thefC (0, ∞) with

$$( - 1)^n f^{(n + 1)} (x) \geqq 0,x \in (0,\infty ),n = 0,1,2, \ldots .$$

In particular it contains the class of monotone operator functions. Furthermore if exp {−tH} isL p(X;dμ) contractive for allp∈[1, ∞] and allt>0 (or, equivalently, forp=∞ andt>0) then exp {−tf(H)} has the same property. Various applications to monotonicity properties of Green's functions are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Widder, D.V.: The Laplace transform. Princeton: Princeton University Press 1941

    Google Scholar 

  2. Löwner, K.: Über monotone Matrixfunktionen. Math. Z.38, 177–216 (1934)

    Google Scholar 

  3. Bendat, J., Sherman, S.: Monotone and convex operator functions. Trans. Am. Math. Soc.79, 58–71 (1955)

    Google Scholar 

  4. Donoghue, W.F.: Monotone matrix functions and analytic continuation. Berlin, Heidelberg, New York: Springer 1974

    Google Scholar 

  5. Herglotz, G.: Über Potenzreihen mit positivem, reellem Teil im Einheitskreis. Leipz. Bericht63, 501–511 (1911)

    Google Scholar 

  6. Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. IV. New York, San Francisco, London: Academic Press 1978

    Google Scholar 

  7. Beurling, A., Deny, J.: Espaces de Dirichlet. I. Le cas elementaire. Acta Math.99, 203–224 (1958)

    Google Scholar 

  8. Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics, Vol. II. Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  9. Roberts, A.W., Varberg, D.E.: Convex functions. New York, London: Academic Press 1973

    Google Scholar 

  10. Simon, B.: An abstract Kato's inequality for generators of positivity preserving semigroups. Indiana University Math. J.26, 1067–1073 (1977)

    Google Scholar 

  11. Simon, B.: Kato's inequality and the comparison of semigroups. J. Funct. Anal.32, 97–101 (1979)

    Google Scholar 

  12. Hess, H., Schrader, R., Uhlenbrock, D.A.: Domination of semigroups and generalization of Kato's inequality. Duke Math. J.44, 893–904 (1977)

    Google Scholar 

  13. Kishimoto, A., Robinson, D.W.: Subordinate semigroups and order properties. University of New South Wales. Preprint 1980

  14. Bochner, S.: Harmonic analysis and the theory of probability. Berkeley, California: Berkeley University Press 1955

    Google Scholar 

  15. Phillips, R.S.: On the generation of semi-groups of linear operators. Pac. J. Math.2, 343–369 (1952)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Araki

On leave of absence from the University of Oslo

On leave of absence from Yokohama City University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bratteli, O., Kishimoto, A. & Robinson, D.W. Positivity and monotonicity properties ofC 0-semigroups. I. Commun.Math. Phys. 75, 67–84 (1980). https://doi.org/10.1007/BF01962592

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01962592

Keywords

Navigation