Skip to main content
Log in

Dried biomass of green algae and its matrix matching with green parts of higher plants

Part I: Contents of Ca, Fe, K, Mg, Mn, Na, P, S, and Si

  • Preparation And Homogeneity Of RMs
  • Published:
Fresenius' Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Literature data for the content of matrix elements in dry biomass of green algae have been compared with those for green parts of higher plants. The data were evaluated by means of frequency histograms and box-and-whisker plots. With two exceptions (Fe, P), the spread of the data values for a given element was broader for higher plants than for algae. Distribution of the data was asymmetric, in most cases with long right-hand tails. All outliers found (average 5.6% for algae, 9.1% for higher plants) lay above the bulk of the data values. In all cases, there was either partial or (mostly) complete overlap of the ranges for algae with those for higher plants. While the question of matrix-matching of reference materials prepared from algal biomass with samples from green parts of higher plants can exhaustively be answered only after a similar comparison of the composition of matrix compounds, the content of the main matrix elements is certainly not doubtful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Šetlík I, Šetlíková E, Masojídek J, Zachleder V, Kalina T, Mader P (1981) In: Akoyunoglou G (ed) Photosynthesis V. Chloroplast development. Balaban Int Sci Service, Vol 5, Philadelphia, pp 481–490

  2. Mader P (1992) In: Book of abstracts, BERM-5, Aachen, May 11–14, pp 29–30

  3. Brown MR, Jeffrey SW (1992) J Exp Mar Biol 161:91–113

    Google Scholar 

  4. Hollmann PCH, Boenke A, Wagstaffe PJ (1993) Fresenius J Anal Chem 345:174–179

    Google Scholar 

  5. Wolf W, Andrews K (1994) In: Book of abstracts, BERM-6, Kailua-Kona, Hawaii, April 17–21, p 33

  6. Scott RO, Mitchell RL, Purves D, Voss RC (1971) Spectrochemical methods of the analysis of soils, plants and other agricultural materials, The Macaulay institute for soil research, Aberdeen, p 34

    Google Scholar 

  7. Mader P, Száková J, Čurdová E, Talanta (in press)

  8. Kučera J (1994) Private communication

  9. Braitlander Referenzmaterial biologische Matrix. Materials of plant origin (1993) Braitlander GmbH, Hamm, Germany

  10. Commission of the European Communities (1992) BCR Reference Materials. Community Bureau of Reference, Brussels

    Google Scholar 

  11. (1990) Katalóg referenčných materiálov pre životné prostredie. CHEMMEA s.r.o., Bratislava

  12. Houba VJG, Uittenbogaard J, De Lange-Harmse A-M (1991) Chemical composition of various plant species. Dept Soil Sci Plant Nutr, Wageningen Agricultural University, The Netherlands

    Google Scholar 

  13. Bergmann W, Neubert P (1976) Pflanzendiagnose und Pflanzenanalyse, VEB Gustav Fischer, Jena

    Google Scholar 

  14. Jones JB Jr, Wolf B, Mills HA (1991) Plant analysis handbook. Micro-Macro, USA

    Google Scholar 

  15. Pendias AK, Pendias H (1992) Trace elements in soils and plants. CRC Press, USA

    Google Scholar 

  16. Chao-Yong LH, Shulte EE (1985) Commun Soil Sci Plant Anal 9:943–958

    Google Scholar 

  17. Pfluger R, Mengel K (1972) Plant Soil 36:417–425

    Google Scholar 

  18. Heanes DL (1990) Analyt Lett 4:675–702

    Google Scholar 

  19. Anderson DL, Henderson LJ (1986) Agron J 78:937–939

    Google Scholar 

  20. Anderson DL, Henderson LJ (1988) Agron J 80:549–552

    Google Scholar 

  21. Oles PJ, Graham WM (1991) J Assoc Off Anal Chem 74:812–814

    Google Scholar 

  22. Krauss WR (1953) In: Burlew SJ (ed): Algal culture from laboratory to pilot plant. Carnegie institution of Washington publication 600, Washington, DC

  23. Straka J et al (1970) Hnojení ovocných plodin. Metodiky ÚVTI, Praha

    Google Scholar 

  24. Kuennen RW, Wolnik KA, Fricke FL (1982) Anal Chem 54:2146–2150

    Google Scholar 

  25. Blízek A, Balák K, Prokeš B, Rydlo O (1978) Čs Gynekologie 43:673

    Google Scholar 

  26. Vébr K, Zahradník J (1986) Dočištování vod autotrofními mikroorganismy a vyššími rostlinami. Academia ČSAV Studie 24–86, Praha

    Google Scholar 

  27. Felfoldy L (1965) Algaltermesztes. OMgK, Budapest

    Google Scholar 

  28. Oh-Hama T, Miyachi S (1988) In: Borowitzka MA, Borowitzka LJ (ed): Microalgal biotechnology. Cambridge University Press, Cambridge

    Google Scholar 

  29. Lipstein B, Hurwitz S (1980) In: Shelef G, Soeder CJ (ed): Algae biomass — production and use. North-Holland Biomedical Press, Elsevier, pp 667–685

    Google Scholar 

  30. Salnikova MJa (1977) Chlorella — novyj vid korma. Kolos, Moskva

    Google Scholar 

  31. Gribovskaja IV (1972) In: Materialy VII vsesojuz raboč sovesč po voprosam krugovorota věščestv v zamknutoj sisteme na osnove žiznědějatelnosti nižšich organizmov. Naukova Dumka. Kijev

    Google Scholar 

  32. (1990) Japan food research laboratories authorized by the Japanese government. LTD, Taiwan

  33. Kajan M, Doucha J, Lívanský K, Henrych B, Roobová M (1991) Živoč Výr 10:877–884

    Google Scholar 

  34. Lee BH, Picard GA (1982) Can Inst Food Sci Technol J 15:58–64

    Google Scholar 

  35. Becker EW (1980) In: Shelef G, Soeder CJ (ed): Algae biomass — production and use. North-Holland Biomedical Press, Elseiver, pp 767–786

    Google Scholar 

  36. Brune H, Walz OP (1978) Arch Hydrobiol Beih 11:79–88

    Google Scholar 

  37. Soeder CJ et al (1970) Jahrb Minist Wissensch u Forsch, Nordrhein-Westfalen

  38. Runkel KH, Baak I (1972) Fresenius Z Anal Chem 260:284–288

    Google Scholar 

  39. Horáček J, Komárek J (1972) Čas Lék. Čes 42:984–987

    Google Scholar 

  40. Payer HD, Pabst W, Runkel KH (1980) In: Shelef G, Soeder CJ (ed): Algae biomass — production and use. North-Holland Biomedical Press, Elsevier, pp 787–797

    Google Scholar 

  41. Soeder CJ, Hegewald E (1988) In: Borowitzka MA, Borowitzka LJ (ed) Microalgal biotechnology. Cambridge University Press, Cambridge, pp 59–84

    Google Scholar 

  42. (1966) Rozbor řas Scenedesmus quadricauda ze sklizně. Farmitalia Centro sperimintale zootecnico veterinario Nerviano, Milano Italia

  43. Kamiya A, Miyachi S: General characteristics of green microalgae: Chlorella. CRC Handbook of Biosolar Resources, pp 25–32

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mader, P., Stejskalová, I. & Slámová, A. Dried biomass of green algae and its matrix matching with green parts of higher plants. Fresenius J Anal Chem 352, 131–135 (1995). https://doi.org/10.1007/BF00322312

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00322312

Keywords

Navigation