Skip to main content
Log in

A probe of dynamical models using functional sensitivity densities with application to He++Ne(2p 6)→He++Ne(2p 53s) and Li+I→Li++I

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

The functional sensitivity densities δ ln σ12(E)/δ lnV ii (R) for He++Ne(2p 6)→He++Ne(2p 53s) reveal that the collisional excitation cross section σ12(E) is insensitive to the additional diabatic curveV 33 included in some models. The negligible sensitivity of σ12(E) toV 33 offers a quantitative validation of the more popular two state model for collisional excitation of Ne by He+. The sensitivity profiles for the collisional ionization Li+I→Li++I modeled by crossing diabatic curvesV 11 (covalent) andV 22 (ionic) shows that the ionization cross section does not depend on inner crossings even when these stem from large distortions in the underlying potential energy curves. The lack of sensitivity to inner crossings establishes the predominant role of the outermost crossing in triggering nonadiabatic transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rebentrost F (1981) In: Henderson D (ed) Theoretical Chemistry: Advances and Perspectives. Academic, New York; MS Child (1979) In: Bernstein RB (ed) Atom Molecule Collision Theory: A Guide for the Experimentalist. Plenum, New York; Tully JC (1976) In: Miller WH (ed) Dynamics of Molecular Collisions. Plenum, New York, Part B

    Google Scholar 

  2. Nakamura H (1991) Int Rev Phys Chem 10:123 and references therein

    Google Scholar 

  3. Nakamura H (1987) J Chem Phys 87:4031; Nakamura H (1984) J Phys Chem 88:4812

    Google Scholar 

  4. for example Wooley AM (1971) Molec Phys 22:207; Sink ML, Bandrauk D (1976) J Chem Phys 66:5313; Korsch HJ (1983) Molec Phys 49:325

    Google Scholar 

  5. Olson RE, Smith FT (1971) Phys Rev A 3:1607;

    Google Scholar 

  6. Braga JP, Dunne LJ, Murrell JN (1985) Chem Phys Lett 120:147;

    Google Scholar 

  7. Child MS, Gerber RB (1979) Mol Phys 38:421;

    Google Scholar 

  8. Eu BC, Tsien TP (1973) Phys Rev A 7:648

    Google Scholar 

  9. McLafferty FJ, George TF (1975) J Chem Phys 63:2609 and references therein; Laing JR, George TF (1977) Phys Rev A 16:1082; Cho U-I, Eu BC (1976) Molec Phys 32:1; (1976) 32:19; Eu BC, Zaritsky N (1979) J Chem Phys 70:4986

    Google Scholar 

  10. Shi S, Rabitz H (1989) Comp Phys Rep 10:1 and references therein

    Google Scholar 

  11. Padmavathi DA, Mishra MK, Rabitz H (1993) Phys Rev A48:279; Mishra M, Guzman R, Rabitz H (1987) Phys Rev A 36:1124

    Google Scholar 

  12. Padmavathi DA, Mishra MK, Rabitz H (1993) Phys Rev A 48:286

    PubMed  Google Scholar 

  13. Padmavathi DA, Mishra MK, Rabitz H (1994) Chem Phys 179:469

    Google Scholar 

  14. Padmavathi DA, Mishra MK, Rabitz H (1994) Phys Rev A 50:3142

    PubMed  Google Scholar 

  15. Faist MB, Levine RD (1976) J Chem Phys 64:2953

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padmavathi, D.A., Mishra, M.K. & Rabitz, H. A probe of dynamical models using functional sensitivity densities with application to He++Ne(2p 6)→He++Ne(2p 53s) and Li+I→Li++I . Theoret. Chim. Acta 90, 323–329 (1995). https://doi.org/10.1007/BF01113539

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113539

Key words

Navigation