Skip to main content
Log in

Polarized basis sets and the calculation of infrared intensities from nuclear electric shielding tensors

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

The idea of the basis set polarization which follows from the known dependence of basis set functions on the perturbation strength is applied to the calculation of the dipole moment derivatives with respect to nuclear displacements. The differentiation of the dipole moment function is replaced by the straightforward evaluation of derivatives of the intramolecular electric field with respect to the external electric field strength. The method and its efficiency are illustrated by a series of calculations of the dipole moment derivatives for the water molecule. Already a polarized basis set of 26 CGTO's derived from the minimal CGTO basis set provides fairly reasonable results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steele, D., Person, W. B. In: Specialist Periodical Report. Molecular Spectroscopy. Vol. 2, pp. 357–438. London: Chemical Society 1975; see also recent reviews in: Vibrational Intensities in Infrared and Raman Spectroscopy. Person, W. B., Zerbi, G. (eds.) Amsterdam: Elsevier 1982

    Google Scholar 

  2. Steele, D.: Adv. IR Raman Spectrosc. 1, 232 (1975)

    Google Scholar 

  3. John, I. G., Bacskay, G., Hush, N. S.: Chem. Phys. 51, 49 (1980) and references therein

    Google Scholar 

  4. Komornicki, A., McIver Jr., J. W.: J. Chem. Phys. 70, 2014 (1979); Komornicki, A., Jaffe, R. L.: J. Chem. Phys. 71, 2150 (1979); Carlowitz von, S., Ziel, W., Pulay, P., Boggs, J. E.: J. Mol. Struct. Teochem. 87, 113 (1982): Fredkin, D. R., Komornicki, A., White, S. R., Wilson, K. R.: J. Chem. Phys. 78, 7077 (1983)

    Google Scholar 

  5. Bacskay, G. B., Saebø, S., Taylor, P. R.: Chem. Phys. in the press

  6. Pulay, P. In: Schaefer III, H. F. (ed.), Applications of Molecular Electronic Structure Theory, New York: Plenum Press 1977; Pulay, P.: J. Chem. Phys. 78, 5043 (1983)

    Google Scholar 

  7. Swanstrøm, P., Hegelund, F. In: Diercksen, G. H. F., Sutcliffe, B. T., Veillard, A. (eds.), Computational Techniques in Quantum Chemistry and Molecular Physics, p. 299. Dordrecht: Reidel Publ. Co. 1975

    Google Scholar 

  8. Lazzeretti, P., Zanasi, R.: Chem. Phys. Letters 112, 103 (1984)

    Google Scholar 

  9. Lazzeretti, P., Zanasi, R.: Chem. Phys. Letters 71, 529 (1980); Lazzeretti, P., Zanasi, R.: J. Chem. Phys., to be published

    Google Scholar 

  10. Lazzeretti, P., Zanasi, R.: Phys. Rev. A24, 1696 (1981)

    Google Scholar 

  11. Roos, B. O., Sadlej, A. J.: Chem. Phys., 94 43 (1985)

    Google Scholar 

  12. Biarge, J. F., Herranz, J., Morcillo, J.: An. R. Soc. Esp. Fis. Quim. Ser. A57, 81 (1961); Morcillo, L. J., Zamorano, J., Heredia, J. M. V.: Spectrochim. Acta 22, 1969 (1966).

    Google Scholar 

  13. Person, W. B., Newton, J. H.: J. Chem. Phys. 61, 1040 (1974); Person, W. B., Newton, J. H.: J. Chem. Phys. 64, 3036 (1976)

    Google Scholar 

  14. Epstein, S. T.: The Variation Method in Quantum Chemistry. New York: Academic Press 1974

    Google Scholar 

  15. Hirschfelder, J. O., Epstein, S. T., Byers-Brown, W.: Adv. Quantum Chem. 1, 284 (1964).

    Google Scholar 

  16. Gerrat, J., Mills, I. M.: J. Chem. Phys. 49, 1719, 1730 (1968); Thomson, K., Swanstrøm, P.: Mol. Phys. 26, 735, 751 (1974)

    Google Scholar 

  17. Dodds, J. L., McWeeny, R., Sadlej, A. J.: Mol. Phys. 34, 1779 (1977)

    Google Scholar 

  18. Epstein, S. T., Sadlej, A. J.: Int. J. Quantum Chem. 15, 147 (1979); Woliński, K., Sadlej, A. J.: Mol. Phys. 41, 1419 (1980)

    Google Scholar 

  19. Nerbrant, P.-O., Roos, B. O., Sadlej, A. J.: Int. J. Quantum Chem. 15, 135 (1979); Diercksen, G. H. F., Roos, B. O., Sadlej, A. J.: Chem. Phys. 59, 29 (1981)

    Google Scholar 

  20. Dalgarno, A.: Adv. Phys. 11, 281 (1962)

    Google Scholar 

  21. Roos, B., Siegbahn, P.: Theoret. Chim. Acta (Berl.) 17, 209 (1970)

    Google Scholar 

  22. Huzinaga, S.: J. Chem. Phys. 42, 1293 (1965)

    Google Scholar 

  23. Snyder, L. C., Basch, H.: Molecular Wave Functions and Properties. New York: Wiley 1972

    Google Scholar 

  24. Huzinaga, S.: Approximate Atomic Functions. Technical Report: Division of Theoretical Chemistry, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada 1971

    Google Scholar 

  25. Salez, C., Veillard, A.: Theoret. Chim. Acta (Berl.) 11, 441 (1968)

    Google Scholar 

  26. Sadlej, A. J.: Mol. Phys. 34, 731 (1977)

    Google Scholar 

  27. Dunning Jr., T. H., Hay, P. J. In: Methods of Electronic Structure Theory, Vol. 3, p. 1. H. F. Schaefer III, (ed.) New York: Plenum Press 1977

    Google Scholar 

  28. Zilles, B. A., Person, W. B.; J. Chem. Phys. 79, 65 (1983)

    Google Scholar 

  29. Nakatsuji, H., Kanda, K., Yonezawa, T.; J. Chem. Phys. 77, 3109 (1982)

    Google Scholar 

  30. Sadlej, A. J.: Acta Phys. Polon. A53, 297 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolinski, K., Roos, B.O. & Sadlej, A.J. Polarized basis sets and the calculation of infrared intensities from nuclear electric shielding tensors. Theoret. Chim. Acta 68, 431–444 (1985). https://doi.org/10.1007/BF00527668

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00527668

Key words

Navigation