Skip to main content
Log in

A model study of the intermolecular interactions of amino acids in aqueous solution: The glycine-water system

  • Original Investigations
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

We have performed calculations of the glycine zwitterion surrounded by water molecules with the help of the mutually consistent field (MCF) method and perturbation theoretical expressions. Two different models for the hydration shell have been chosen, the glycine·6H2O and glycine·12H2O complexes, representing the most probable first and second solvation shell, respectively. To calculate the exchange and charge transfer energy contributions we have applied approximative expressions derived from perturbation theory for weakly overlapping subunits. For the sake of comparison we also calculated the interaction energy in the supermolecule approach for the smaller of the two solvation complexes. Furthermore, we have investigated the part of the potential energy surface which is determined by varying the lengths of the hydrogen bonds between glycine and water in the complex glycine·12H2O using the electrostatic approach. The exchange energy contribution to the interaction energy for different points on the surface was approximated with the help of an analytical expression fitted to three directly calculated points. For the charge transfer energy a polynomial expansion of second order was established on the basis of five values, computed with the aid of the perturbation theoretical expression. To get a more detailed insight in the relatively strong hydrogen bonds between the water molecules and the ionic hydrophilic parts of glycineab initio model studies on NH +4 ·3H2O and HCOO·3H2O systems are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Otto, P., Ladik, J.: Chem. Phys.8, 192 (1975)

    Article  CAS  Google Scholar 

  2. Otto, P., Ladik, J.: Chem. Phys.19, 209 (1977)

    Article  CAS  Google Scholar 

  3. Otto, P.: Chem. Phys.33, 407 (1978)

    Article  CAS  Google Scholar 

  4. Otto, P.: Chem. Phys. Lett.62, 538 (1979)

    Article  CAS  Google Scholar 

  5. Pullman, B.: Adv. Quant. Chem.10, 251 (1977)

    CAS  Google Scholar 

  6. Port, G. N. J., Pullman, A.: Int. J. Quant. Chem.QBS 1, 21 (1974)

    Google Scholar 

  7. Pullman, A., Pullman, B.: Quart. Rev. Biophys.7, 505 (1975)

    Google Scholar 

  8. Port, G. N. J., Pullman, A.: FEBS Letters31, 70 (1973)

    Article  CAS  Google Scholar 

  9. Dreyfus, M., Maigret, B., Pullman, A.: Theoret. Chim. Acta (Berl.)17, 109 (1970)

    Article  CAS  Google Scholar 

  10. Berthold, H., Pullman, B.: Biochem. Biophys. Acta232, 595 (1971)

    Google Scholar 

  11. Diner, S., Malrieu, J. P., Claverie, P.: Theoret. Chim. Acta (Berl.)13, 1 (1969)

    Article  CAS  Google Scholar 

  12. Malrieu, J. P., Claverie, P., Diner, S.: Theoret. Chim. Acta (Berl.)13, 18 (1969)

    Article  CAS  Google Scholar 

  13. Diner, S., Malrieu, J. P., Jordan, F., Gilbert, M.: Theoret. Chim. Acta (Berl.)15, 110 (1969)

    Article  Google Scholar 

  14. Beveridge, D. L., Kelly, M. M., Radna, R. J.: Int. J. Quant. Chem. Soc.96, 3769 (1974)

    CAS  Google Scholar 

  15. Hopfinger, A. J.: Conformational properties of macromolecules. New York: Academic Press 1973

    Google Scholar 

  16. Carozzo, L., Corongiu, G., Petrongolo, C., Clementi, E.: J. Chem. Phys.68, 787 (1978)

    Article  CAS  Google Scholar 

  17. Rugassi, M., Ferro, D. R., Clementi, E.: J. Chem. Phys.70, 1040 (1979).

    Google Scholar 

  18. Clementi, E., Corongiu, G.: J. Chem. Phys.72, 3979 (1980)

    CAS  Google Scholar 

  19. Clementi, E., Corongiu, G.: Int. J. Quant. Chem.16, 897 (1979); Clementi, E.: Computational aspects for large chemical systems. Lecture Notes in Chemistry, Vol.19, p. 152. Heidelberg New York: Springer Verlag 1980

    Article  CAS  Google Scholar 

  20. Ladik, J.: Electronic structure of polymers and molecular crystals. Ed. André, J.-M., Delhalle, J., Ladik, J., p. 663. New York: Plenum Press 1975

    Google Scholar 

  21. Ladik, J.: Int. J. Quant. Chem.QBS 1, 5 (1974)

    Google Scholar 

  22. Suhai, S., Ladik, J.: Acta Chim. Acad. Sci. Hung.82, 67 (1974)

    CAS  Google Scholar 

  23. Suhai, S.: Biopolymers13, 1731 (1974)

    CAS  Google Scholar 

  24. Beveridge, D. L., Jano, I., Ladik, J.: J. Chem. Phys.56, 4744 (1972)

    Article  CAS  Google Scholar 

  25. Suhai, S., Kaspar, J., Ladik, J.: Int. J. Quant. Chem.17, 995 (1980)

    Article  CAS  Google Scholar 

  26. Clementi, E.: Computational aspects for large chemical systems. Lecture Notes in Chemistry, Vol. 19, p. 102. Springer Verlag, Heidelberg-New York, 1980

    Google Scholar 

  27. Hehre, W., Stewart, R. F., Pople, J. A.: J. Chem. Phys.51, 2657 (1969)

    Article  CAS  Google Scholar 

  28. Boys, S. F.: Rev. Mod. Phys.32, 306 (1966)

    Google Scholar 

  29. Gaissmaier, B., Hohecker, W., Unbehauen, R., Wehrhahn, W.: Frequenz Bd29, No. 5 (1975)

    Google Scholar 

  30. Sohalski, W. A., Chojnacki, H.: Int. J. Quant. Chem.13, 679 (1978)

    Google Scholar 

  31. Murrel, J. N., Randic, M., Williams, D. R.: Proc. Roy. Soc. A284, 566 (1965)

    Google Scholar 

  32. See Ref. [26], p. 101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Förner, W., Otto, P., Bernhardt, J. et al. A model study of the intermolecular interactions of amino acids in aqueous solution: The glycine-water system. Theoret. Chim. Acta 60, 269–281 (1981). https://doi.org/10.1007/BF02394727

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02394727

Key words

Navigation