Skip to main content
Log in

Tungstate can substitute for molybdate in sustaining growth of Methanobacterium thermoautotrophicum

Identification and characterization of a tungsten isoenzyme of formylmethanofuran dehydrogenase

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Methanobacterium thermoautotrophicum (strain Marburg) was found to grow on media supplemented with tungstate rather than with molybdate. The Archaeon then synthesized a tungsten iron-sulfur isoenzyme of formylmethanofuran dehydrogenase. The isoenzyme was purified to apparent homogeneity and shown to be composed of four different subunits of apparent molecular masses 65 kDa, 53 kDa, 31 kDa, and 15 kDa and to contain per mol 0.4 mol tungsten, <0.05 mol molybdenum, 8 mol non-heme iron, 8 mol acid-labile sulfur and molybdopterin guanine dinucleotide. Its molecular and catalytic properties were significantly different from those of the molybdenum isoenzyme characterized previously. The two isoenzymes also differed in their metal specificity: the active molybdenum isoenzyme was only synthesized when molybdenum was available during growth whereas the active tungsten isoenzyme was also generated during growth of the cells on molybdate medium. Under the latter conditions the tungsten isoenzyme was synthesized containing molybdenum rather than tungsten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

MFR:

methanofuran

CHO-MFR:

N-formylmethanofuran

MGD:

molybdopterin guanine dinucleotide

MAD:

molybdopterin adenine dinucleotide

MHD:

molybdopterin hypoxanthine dinucleotide

FPLC:

fast protein liquid chromatography

SDS/PAGE:

sodium dodecylsulfate/polyacrylamide gel electrophoresis

ICP-MS:

inductively coupled plasma mass spectrometry

References

  • Adams MWW (1992) Novel iron-sulfur centers in metalloenzymes and redox proteins from extremely thermophilic bacteria. Adv Inorg Chem 38: 341–396.

    Google Scholar 

  • Andreesen JR, Ljungdahl LG (1973) Formate dehydrogenase of Clostridium thermoaceticum: incorporation of selenium-75, and the effects of selenite, molybdate, and tungstate on the enzyme. J Bacteriol 116: 867–873.

    Google Scholar 

  • Andreesen JR, Schaupp A, Neurauter C, Brown A, Ljungdahl LG (1973) Fermentation of glucose, fructose, and xylose by Clostridium thermoaceticum: effect of metals on growth yield, enzymes, and the synthesis of acetate from CO2. J Bacteriol 114: 743–751.

    Google Scholar 

  • Börner G, Karrasch M, Thauer RK (1989) Formylmethanofuran dehydrogenase activity in cell extracts of Methanobaeterium thermoautotrophicum and of Methanosarcina barkeri. FEBS Lett 244: 21–25.

    Google Scholar 

  • Börner G, Karrasch M, Thauer RK (1991) Molybdopterin adenine dinucleotide and molybdopterin hypoxanthine dinucleotide in formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum (Marburg) FEBS Lett 290: 31–34.

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254.

    Google Scholar 

  • Breitung J, Börner G, Scholz S, Linder D, Stetter KO, Thauer RK (1992) Salt dependence, kinetic properties and catalytic mechanism of N-formylmethanofuran: tetrahydromethanopterin formyltransferase from the extreme thermophile Methanopyrus kandleri. Eur J Biochem 210: 971–981.

    Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14: 454–458.

    Google Scholar 

  • Cramer SP, Liu CL, Mortenson LE, Spence JT, Liu SM, Yamamoto I, Ljungdahl LG (1985) Formate dehydrogenase molybdenum and tungsten sites — observation by EXAFS of structural differences. J Inorg Biochem 23: 119–124.

    Google Scholar 

  • Donnelly MI, Wolfe RS (1986) The role of formylmethanofuran: tetrahydromethanopterin formyltransferase in methanogenesis from carbon dioxide. J Biol Chem 261: 16653–16659.

    Google Scholar 

  • Fish WW (1988) Rapid colorimetric micromethod for the quantitation of complexed iron in biological samples. Methods Enzymol 158: 357–364.

    Google Scholar 

  • Fraústo da Silva JJR, Williams RJP (1991) The biological chemistry of the elements: the inorganic chemistry of life. Clarendon Press, Oxford, pp 411–435.

    Google Scholar 

  • George GN, Prince RC, Mukund S, Adams MWW (1992) Aldehyde ferredoxin oxidoreductase from the hyperthermophilic archaebacterium Pyrococcus furiosus contains a tungsten oxothiolate center. J Am Chem Soc 114: 3521–3523.

    Google Scholar 

  • Girio FM, Marcos JC, Amarall-Collaço MT (1992) Transition metal requirement to express high level NAD+-dependent formate dehydrogenase from a serine-type methylotrophic bacterium. FEMS Microbiol Lett 97: 161–166.

    Google Scholar 

  • Johnson JL, Bastian NR, Rajagopalan KV (1990) Molybdopterin guanine dinucleotide: a modified form of molybdopterin identified in the molybdenum cofactor of dimethyl sulfoxide reductase from Rhodobacter sphaeroides forma specialis denitrificans. Proc Natl Acad Sci USA 87: 3190–3194.

    Google Scholar 

  • Johnson JL, Rajagopalan KV, Mukund S, Adams MWW (1993) Identification of molybdopterin as the organic component of the tungsten cofactor in four enzymes from hyperthermophilic archaea. J Biol Chem 268: 4848–4852.

    Google Scholar 

  • Jones JB, Stadtman TC (1977) Methanococcus vannielii: culture and effects of selenium and tungsten on growth. J Bacteriol 130: 1404–1406.

    Google Scholar 

  • Jones JB, Stadtman TC (1981) Selenium-dependent and selenium-independent formate dehydrogenases of Methanococcus vannielii: Separation of the two forms and characterization of the purified selenium-independent form. J Biol Chem 256: 656–663.

    Google Scholar 

  • Juszczak A, Aono S, Adams MWW (1991) The extremely thermophilic eubacterium, Thermotoga maritima, contains a novel iron-hydrogenase whose cellular activity is dependent upon tungsten. J Biol Chem 266: 13834–13841.

    Google Scholar 

  • Karrasch M, Börner G, Enßle M, Thauer RK (1989) Formylmethanofuran dehydrogenase from methanogenic bacteria, a molybdoenzyme. FEBS Lett 253: 226–230.

    Google Scholar 

  • Karrasch M, Börner G, Enssle M, Thauer RK (1990) The molybdoenzyme formylmethanofuran dehydrogenase from Methanosarcina barkeri contains a pterin cofactor. Eur J Biochem 194: 367–372.

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Google Scholar 

  • Leonhardt U, Andreesen JR (1977) Some properties of formate dehydrogenase, accumulation and incorporation of 185W-tungsten into proteins of Clostridium formicoaceticum. Arch Microbiol 115: 277–284.

    Google Scholar 

  • Ljungdahl LG (1976) Tungsten, a biologically active metal. Trends Biochem Sci 1: 63–65.

    Google Scholar 

  • Mukund S, Adams MWW (1990) Characterization of a tungsten-iron-sulfur protein exhibiting novel spectroscopic and redox properties from the hyperthermophilic archaebacterium Pyrococcus furiosus. J Biol Chem 265: 11508–11516.

    Google Scholar 

  • Mukund S, Adams MWW (1991) The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase: evidence for its participation in a unique glycolytic pathway. J Biol Chem 266: 14208–14216.

    Google Scholar 

  • Mukund S, Adams MWW (1993) Characterization of a novel tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon, Thermococcus litoralis: a role for tungsten in peptide catabolism. J Biol Chem 268: 13592–13600.

    Google Scholar 

  • Olsen GJ, Woese CR (1993) Ribosomal RNA: a key to phylogeny. FASEB J 7: 113–123.

    Google Scholar 

  • Rospert S, Linder D, Ellermann J, Thauer RK (1990) Two genetically distinct methyl-coenzyme M reductases in Methanobacterium thermoautotrophicum strain Marburg and ΔH. Eur J Biochem 194: 871–877.

    Google Scholar 

  • Schmitz RA, Albracht SPJ, Thauer RK (1992a) A molybdenum and a tungsten isoenzyme of formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei. Eur J Biochem 209: 1013–1018.

    Google Scholar 

  • Schmitz RA, Albracht SPJ, Thauer RK (1992b) Properties of the tungsten-substituted molybdenum formylmethanofuran dehydrogenase from Methanobacterium wolfei. FEBS Lett 309: 78–81.

    Google Scholar 

  • Schmitz RA, Richter M, Linder D, Thauer RK (1992c) A tungsten-containing active formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei. Eur J Biochem 207: 559–565.

    Google Scholar 

  • Schönheit P, Moll J, Thauer RK (1979) Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Arch Microbiol 123: 105–107.

    Google Scholar 

  • Schönheit P, Moll J, Thauer RK (1980) Growth parameters (K s, μmax, Y s) of Methanobacterium thermoautotrophicum. Arch Microbiol 127: 59–65.

    Google Scholar 

  • Smith HE, Eady RR (1992) Metalloclusters of the nitrogenases. Eur J Biochem 205: 1–15.

    Google Scholar 

  • Stetter KO (1993) Life at the upper temperature border. In: Trân Than Vân JK, Mounolou JC, Schneider J, McKay C (eds) Colloque Interdisciplinaire du Comité National de la Recherche Scientifique, Frontiers of Life. Editions Frontières, Gif-sur-Yvette, pp 195–219.

    Google Scholar 

  • Strobl G, Feicht R, White H, Lottspeich F, Simon H (1992) The tungsten-containing aldehyde oxidoreductase from Clostridium thermoaceticum and its complex with a viologen-accepting NADPH oxidoreductase. Biol Chem Hoppe-Seyler 373: 123–132.

    Google Scholar 

  • Van Bruggen JJA, Zwart KB, Hermans JGF, Hove EM van, Stumm CK, Vogels GD (1986) Isolation and characterization of Methanoplanus endosymbiosus sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt. Arch Microbiol 144: 367–374.

    Google Scholar 

  • Wagner R, Andreesen JR (1977) Differentiation between Clostridium acidiurici and Clostridium cylindrosporum on the basis of specific metal requirements for formate dehydrogenase formation. Arch Microbiol 114: 219–224.

    Google Scholar 

  • Wagner R, Andreesen JR (1987) Accumulation and incorporation of 185W-tungsten into proteins of Clostridium acidiurici and Clostridium cylindrosporum. Arch Microbiol 147: 295–299.

    Google Scholar 

  • Weiss DS, Thauer RK (1993) Methanogenesis and the unity of biochemistry. Cell 72: 819–822.

    Google Scholar 

  • White H, Strobl G, Feicht R, Simon H (1989) Carboxylic acid reductase: a new tungsten enzyme catalyses the reduction of non-activated carboxylic acids to aldehydes. Eur J Biochem 184: 89–96.

    Google Scholar 

  • White H, Feicht R, Huber C, Lottspeich F, Simon H (1991) Purification and some properties of the tungsten-containing carboxylic acid reductase from Clostridium formicoaceticum. Biol Chem Hoppe-Seyler 372: 999–1005.

    Google Scholar 

  • White H, Simon H (1992) The role of tungstate and/or molybdate in the formation of aldehyde oxidoreductase in Costridium thermoaceticum and other acetogens; immunological distances of such enzymes. Arch Microbiol 158: 81–84.

    Google Scholar 

  • White H, Huber C, Feicht R, Simon H (1993) On a reversible molybdenum-containing aldehyde oxidoreductase from Clostridium formicoaceticum. Arch Microbiol 159: 244–249.

    Google Scholar 

  • Widdel F (1986) Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Appl Environ Microbiol 51: 1056–1062.

    Google Scholar 

  • Winter J, Lerp C, Zabel HP, Wildenauer FX, König H, Schindler F (1984) Methanobacterium wolfei, sp. nov., a new tungsten-requiring, thermophilic, autotrophic methanogen. Syst Appl Microbiol 5: 457–466.

    Google Scholar 

  • Wolfe RS (1991) My kind of biology. Ann Rev Microbiol 45: 1–35.

    Google Scholar 

  • Yamamoto I, Saiki T, Liu SM, Ljungdahl LG (1983) Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. J Biol Chem 258: 1826–1832.

    Google Scholar 

  • Zabel HP, König H, Winter J (1984) Isolation and characterization of a new coccoid methanogen, Methanogenium tatii spec. nov. from a solfataric field on Mount Tatio. Arch Microbiol 137: 308–315.

    Google Scholar 

  • Zellner G, Alten C, Stackebrandt E, Conway de Macario E, Winter J (1987) Isolation and characterization of Methanocorpusculum parvum, gen. nov., spec. nov., a new tungsten-requiring, coccoid methanogen. Arch Microbiol 147: 13–20.

    Google Scholar 

  • Zellner G, Winter J (1987) Growth-promoting effect of tungsten on methanogens and incorporation of tungsten-185 into cells. FEMS Microbiol Lett 40: 81–87.

    Google Scholar 

  • Zellner G, Sleytr UB, Messner P, Kneifel H, Winter J (1990) Methanogenium liminatans spec. nov., a new coccoid, mesophilic methanogen able to oxidize secondary alcohols. Arch Microbiol 153: 287–293.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertram, P.A., Schmitz, R.A., Linder, D. et al. Tungstate can substitute for molybdate in sustaining growth of Methanobacterium thermoautotrophicum . Arch. Microbiol. 161, 220–228 (1994). https://doi.org/10.1007/BF00248696

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00248696

Key words

Navigation