Skip to main content
Log in

Enantioselective hydrolysis of O-acetylmandelonitrile to O-acetylmandelic acid by bacterial nitrilases

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Bacteria were enriched from soil samples, using benzylcyanide, α-methyl-, α-ethyl- or α-methoxybenzyl-cyanide as the sole source of nitrogen. All isolated strains belonged to the genus Pseudomonas. Resting cells of the isolates hydrolysed O-acetylmandelonitrile to O-acetylmandelic acid, O-acetylmandelic acid amide and mandelic acid. From racemic O-acetylmandelonitrile all isolates preferentially formed R(−)-acetylmandelic acid ( = d-acetylmandelic acid). The enantioselective hydrolysis of O-acetylmandelonitrile could also be demonstrated in vitro. Crude extracts did not hydrolyse O-acetylmandelic acid amide indicating an enantioselective nitrilase rather than a nitrile hydratase/amidase system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anschütz R, Böcker R (1909) Über die Einwirkung von Acetylman-delsäurechlorid auf Natriummalonsäureester und auf Natrium-cyanessigester. Liebigs Ann Chem 368: 53–75

    Google Scholar 

  • Baker DP, Fewson CA (1989) Purification and characterization of d(−)-mandelate dehydrogenase from Rhodotorula graminis. J Gen Microbiol 135: 2035–2044

    Google Scholar 

  • Bergstrom J, Bergstrom G (1989) Floral scents of Bartsia alpina (Scrophulariaceae). Chemical composition and variation between individual plants. Nord J Bot 9: 363–366

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  CAS  PubMed  Google Scholar 

  • Effenberger F, Ziegler T, Förster S (1987) Enzymkatalysierte Cyanhydrin-Synthese in organischen Lösungsmitteln. Angew Chem 99: 491–493

    Google Scholar 

  • Effenberger F, Hörsch B, Förster S, Ziegler T (1990) Enzyme-catalyzed synthesis of (S)-cyanohydrins and subsequent hydrolysis to (S)-2-hydroxy-carboxylic acids. Tetrahedron Lett 31: 1249–1252

    Google Scholar 

  • Effenberger F, Gutterer B, Ziegler T, Eckhardt E, Eichholz R (1991) Enantioselektive Veresterung racemischer Cyanhydrine und enantioselektive Hydrolyse oder Umesterung racemischer Cyanhydrinester mittels Lipasen. Liebigs Ann Chem 47–51

  • Endo T, Watanabe I (1989) Nitrile hydratase of Rhodococcus sp. N-774. Purification and amino acid sequences. FEBS Lett 32: 61–64

    Google Scholar 

  • Gregersen T (1978) Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotech 5: 123–127

    Google Scholar 

  • Harper DB (1977a) Microbial metabolism of aromatic nitriles. Enzymology of C-N cleavage by Nocardia sp. (Rhodochrous group) NCIB 11216 Biochem J 165: 309–318

    Google Scholar 

  • Harper DB (1977b) Fungal degradation of aromatic nitriles. Enzymology of C-N cleavage by Fusarium solani. Biochem J 167: 685–692

    Google Scholar 

  • Hashimoto S, Kameoka H (1985) Sulfur- and nitrogen-containing neutral volatile components of Cruciferae. J Food Sc 50: 847–852

    Google Scholar 

  • Hook RH, Robinson WG (1964) Ricine nitrilase. II. Purification and properties. J Biol Chem 53: 4263–4267

    Google Scholar 

  • Hummel W, Schütte H, Kula M-R (1988) d-(−)-Mandelic acid dehydrogenase from Lactobacillus curvatus. Appl Microbiol Biotechnol 28: 433–439

    Google Scholar 

  • Jallageas JC, Arnaud A, Galzy P (1980) Bioconversions of nitriles and their applications. Adv Biochem Eng 14: 1–32

    Google Scholar 

  • Kakeya H, Sakai N, Sugai T, Ohta H (1991) Microbial hydrolysis as a potent method for the preparation of optically active nitriles, amides and carboxylic acids. Tetrahedron Lett 32: 1343–1346

    Google Scholar 

  • Klepacka M, Rutkowski A (1982) The presence of nitriles in rapesead meal. Acta Aliment Pol 8: 3–10

    Google Scholar 

  • Kobayashi M, Nagasawa T, Yamada H (1989) Nitrilase of Rhodococcus rhodochrous J1. Eur J Biochem 182: 349–356

    Google Scholar 

  • La-Mer VK, Greenspan J (1934) Kinetics of the saponification of acetylated hydroxy acids. J Am Chem Soc 56: 1492–1499

    Google Scholar 

  • Layh N, Stolz A, Knackmuss H-J, Effenberger F, Förster S (1991) Stereoselective hydrolysis of O-acetylmandelonitrile by bacterial nitrilases. VAAM-Tagung 1991, Freiburg/Br., p 137. In: BIO-forum 1/2. GIT Verlag, Darmstadt, p 60

    Google Scholar 

  • Lockwood GB, Afsharypuor S (1986) Comparative study of the volatile aglucones of glucosinolates from in vivo and in vitro grown Descurainia sophia and Alyssum minimum using gas chromatography-mass spectrometry. J Chrom 356: 438–440

    Google Scholar 

  • Maestracci M, Thiery A, Bui K, Galzy P (1984) Activity and regulation of an amidase (acylamide amidohydrolase, EC 3.5.1.4) with a wide substrate spectrum from a Brevibacterium sp. Arch Microbiol 138: 315–320

    Google Scholar 

  • Mauger J, Nagasawa T, Yamada H (1990) Occurrence of a novel nitrilase, arylacetonitrilase, in Alcaligenes faecalis JM3. Arch Microbiol 155: 1–6

    Google Scholar 

  • Mayaux JF, Cerbelaud E, Soubrier F, Faucher D, Petre D (1990) Purification, cloning, and primary structure of an enantiomer-selective amidase from Brevibacterium sp. strain R312: structural evidence for genetic coupling with nitrile hydratase. J Bacteriol 172: 6764–6773

    Google Scholar 

  • Nagasawa T, Nanba H, Ryuno K, Talkeuchi K (1987) Nitrile hydratase of Ps. chlororaphis B23. Eur J Biochem 162: 691–698

    Google Scholar 

  • Nagasawa T, Ryuno K, Yamada H (1988a) Occurrence of a cobalt-induced and cobalt-containing nitrile hydratase in Rhodococcus rhodochrous J1. Biochem Biophys Res Commun 155: 1008–1016

    Google Scholar 

  • Nagasawa T, Kobayashi M, Yamada H (1988b) Optimum culture conditions for the production of benzonitrilase by Rhodococcus rhodochrous J1. Arch Microbiol 150: 89–94

    Google Scholar 

  • Nagasawa T, Mauger J, Yamada H (1990) A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3. Eur J Biochem 194: 765–772

    Google Scholar 

  • Pfennig M, Lippert KD (1966) Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55: 245–256

    Google Scholar 

  • Robinson WG, Hook RH (1964) Ricine nitrilase. I. Reaction, product and substrate specificity. J Biol Chem 239: 4257–4262

    Google Scholar 

  • Scherrer R (1984) Gram's staining reaction, Gram types and cell walls of bacteria. TIBS 9: 242–245

    Google Scholar 

  • Tani Y, Kurihara M, Nishise H, Yamamoto K (1989) Biotransformation of dinitrile to mononitrile, a tranexamic acid intermediate, by Corynebacterium sp. Agric Biol Chem 53: 3143–3149

    Google Scholar 

  • Utimoto K, Wakabayashi Y, Shisbiyama Y, Inoue M, Nozaki H (1981) 2-Alkoxy and 2,2-dialkoxy nitriles from acetals and orthoesters. Exchange of alkoxy into cyano group by means of cyanotrimethylsilane. Tetrahedron Lett 22: 4279–4280

    Google Scholar 

  • Vaughan PA, Cheetham PSJ, Knowles CJ (1988) The utilization of pyridine carbonitriles and carboxamides by Nocardia rhodochrous LL100–21. J Gen Microbiol 134: 1099–1107

    Google Scholar 

  • Watanabe I, Satoh Y, Enomoto K (1987) Sreening, isolation and taxonomical properties of microorganisms having acrylonitrile-hydrating activity. Agric Biol Chem 51: 3193–3199

    Google Scholar 

  • Yamamoto K, Ueno Y, Otsubo K, Kawakami K, Komatsu KI (1990) Production of S(+)-Ibuprofen from a nitrile compound by Acinetobacter sp. strain AK226. Appl Environ Microbiol 56: 3125–3129

    Google Scholar 

  • Yamamoto K, Oishi K, Fujimatsu I, Komatsu KI (1991) Production of R(−)-mandelic acid from mandelonitrile by Alcaligenes faecalis ATCC 8750. Appl Environ Microbiol 57: 3028–3032

    Google Scholar 

  • Yamazaki Y, Maeda H (1986a) Enzymatic synthesis of optically pure (R)-(−)-mandelic acid and other 2-hydroxycarboxylic acids: screening for the enzyme, and its purification, characterization and use. Agric Biol Chem 50: 2621–2631

    Google Scholar 

  • Yamazaki Y, Maeda H (1986b) Continuous production of (R)-(−)-mandelic acid in a bioreactor using the ultrafiltration method. Agric Biol Chem 50: 3213–3214

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Layh, N., Stolz, A., Förster, S. et al. Enantioselective hydrolysis of O-acetylmandelonitrile to O-acetylmandelic acid by bacterial nitrilases. Arch. Microbiol. 158, 405–411 (1992). https://doi.org/10.1007/BF00276300

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276300

Key words

Navigation