Skip to main content
Log in

Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles of Microcoleus chthonoplastes in hypersaline cyanobacterial mats

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

An unidentified filamentous purple bacterium, probably belonging to a new genus or even a new family, is found in close association with the filamentous, mat-forming cyanobacterium Microcoleus chthonoplastes in a hypersaline pond at Guerrero Negro, Baja California Sur, Mexico, and in Solar Lake, Sinai, Egypt. This organism is a gliding, segmented trichome, 0.8–0.9 μm wide. It contains intracytoplasmic stacked lamellae which are perpendicular and obliquely oriented to the cell wall, similar to those described for the purple sulfur bacteria Ectothiorhodospira. These bacteria are found inside the cyanobacterial bundle, enclosed by the cyanobacterial sheath. Detailed transmission electron microscopical analyses carried out in horizontal sections of the upper 1.5 mm of the cyanobacterial mat show this cyanobacterial-purple bacterial association at depths of 300–1200 μm, corresponding to the zone below that of maximal oxygenic photosynthesis. Sharp gradients of oxygen and sulfide are established during the day at this microzone in the two cyanobacterial mats studied. The close association, the distribution pattern of this association and preliminary physiological experiments suggest a co-metabolism of sulfur by the two-membered community. This probable new genus of purple bacteria may also grow photoheterotrophically using organic carbon excreted by the cyanobacterium. Since the chemical gradients in the entire photic zone fluctuate widely in a diurnal cycle, both types of metabolism probably take place. During the morning and afternoon, sulfide migrates up to the photic zone allowing photoautotrophic metabolism with sulfide as the electron donor. During the day the photic zone is highly oxygenated and the purple bacteria may either use oxidized species of sulfur such as elemental sulfur and thiosulfate in the photoautotrophic mode or grow photoheterotrophically using organic carbon excreted by M. chthonoplastes. The new type of filamentous purple sulfur bacteria is not available yet in pure culture, and its taxonomical position cannot be fully established. This organism is suggested to be a new type of gliding, filamentous, purple phototroph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauld J (1984) Microbial mats in marginal marine environments: Shark Bay, Western Australia. In: Cohen Y, Castenholz RW, Halvorson HO (eds) Microbial mats: Stromatolites. Alan R Liss, New York, pp 39–58

    Google Scholar 

  • Castenholz RW (1982) Motility and taxes. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Univ California Press, Berkeley Los Angeles, pp 413–440

    Google Scholar 

  • Cohen Y (1984a) The Solar Lake cyanobacterial mats: Strategies of photosynthetic life under sulfide: In: Cohen Y, Castenholz RW, Halvorson HO (eds) Microbial mats: Stromatolites. Alan R Liss, New York, pp 133–148

    Google Scholar 

  • Cohen Y (1984b) Oxygenic photosynthesis, anoxygenic photosynthesis, and sulfate reduction in cyanobacterial mats. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. Amer Soc Microbiol, Washington, pp 435–441

    Google Scholar 

  • Cohen Y, Padan E, Shilo M (1975) Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. J Bacteriol 12:855–861

    Google Scholar 

  • Cohen Y, Krumbein WE, Shilo M (1977) Solar Lake (Sinai). 2. Distribution of photosynthetic microorganisms and primary production. Limnol Oceangr 22:609–620

    Google Scholar 

  • Cohen Y, Jørgensen BB, Revsbech NP, Poplawski R (1986) Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria. Appl Environ Microbiol 51:398–407

    Google Scholar 

  • Giesbrecht P, Drews G (1966) Über die Organisation und die mikromolekulare Architektur der Thylakoide „lebender” Bacterien. Arch Mikrobiol 54:297–330

    Google Scholar 

  • Grove SN, Bracker CE, Morre DJ (1968) Cytomembrane differentiation in the endoplasmic reticulum — Golgi apparatus — vesicle complex. Science (Wash DC) 161:171–173

    Google Scholar 

  • Holt S, Trüper HG, Takacs B (1968) Fine structure of Ectothiorhodospira mobilis strain 8113 thylakoids: chemical fixation and freeze etching studies. Arch Mikrobiol 62:111–128

    Google Scholar 

  • Imhoff JF, Trüper HG (1977) Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b. Arch Microbiol 114:115–121

    Google Scholar 

  • Javor B, Castenholz RW (1984) Productivity studies of microbial mats, Laguna Guerrero Negro, Mexico. In: Cohen Y, Castenholz RW, Halvorson HO (eds) Microbial mats: Stromatolites. Alan R Liss, New York, pp 149–170

    Google Scholar 

  • Jørgensen BB, Revsbech NP, Blackburn TH, Cohen Y (1979) Diurnal cycle of oxygen and sulfide microgradients and microbial photosynthesis in a cyanobacterial mat sediment. Appl Environ Microbiol 38:46–58

    Google Scholar 

  • Jørgensen BB, Revsbech NP, Cohen Y (1983) Photosynthesis and structure of benthic microbial mats: Microelectrode and SEM studies of four cyanobacterial communities. Limnol Oceanogr 28:1075–1093

    Google Scholar 

  • Jørgensen BB, Cohen Y, Revsbech NP (1986) Transition from anoxygenic to oxygenic photosynthesis in a Microcoleus chthonoplastes cyanobacterial mat. Appl Environ Microbiol 51:408–417

    Google Scholar 

  • Krumbein WE, Cohen Y, Shilo M (1977) Solar Lake, Sinai, 4. Stromatolitic cyanobacterial mats. Limnol Oceanogr 22:635–656

    Google Scholar 

  • Kushida H (1974) A new method for embedding with a low viscosity epoxy resin: “Quetol 651”. J Electr Microsc 23:197

    Google Scholar 

  • Oelze J, Drews G (1972) Membranes of photosynthetic bacteria. Biochim Biophys Acta 265:209–239

    Google Scholar 

  • Oren A, Shilo M (1979) Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: sulfur respiration and lactate fermentation. Arch Microbiol 122:77–84

    Google Scholar 

  • Padan E, Cohen Y (1982) Anoxygenic photosynthesis. In: Carr NC, Whitton BA (eds) The biology of cyanobacteria. Blackwell Scientific, Oxford, pp 215–235

    Google Scholar 

  • Pfennig N (1975) Phototrophic bacteria and their role in the sulfur cycle. Plant Soil 43:1–16

    Google Scholar 

  • Pfennig N (1977) Phototrophic green and purple bacteria: a comparative systematic survey. Ann Rev Microbiol 31:275–290

    Google Scholar 

  • Pierson BK, Castenholz RW (1974) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24

    Google Scholar 

  • Pierson BK, Giovennoni SJ, Castenholz RW (1984) Physiological ecology of a gliding bacterium containing bacteriochlorophyll a. Appl Environ Microbiol 47:567–584

    Google Scholar 

  • Pierson BK, Giovennoni SJ, Stahl DA, Castenholz RW (1985) Heliotrix oregonensis, gen. nov., sp. nov., a phototrophic filamentous gliding bacterium containing bacteriochlorophyll a. Arch Microbiol 142:164–167

    Google Scholar 

  • Remsen CC, Watson SW, Waterbury JB, Trüper HG (1968) Fine structure of Ectothiorhodospira mobilis Pelsh. J Bacteriol 95:2374–2392

    Google Scholar 

  • Revsbech NP, Ward DJ (1984) Microprofiles of dissolved substances and photosynthesis in microbial mats measured with microelectrodes. In: Cohen Y, Castenholz RW, Halvorson HO (eds) Microbial mats: Stromatolites. Alan R Liss, New York, pp 171–188

    Google Scholar 

  • Revsbech NP, Jørgensen BB (1986) Microelectrodes: Their use in microbial ecology. In: Marshall KC (ed) Advances in microbial ecology, vol 9. Plenum, New York

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–213

    Google Scholar 

  • Stolz JF (1984) Fine structure of the stratified microbial community at Laguna Figueroa, Baja California, Mexico. II. Transmission electron microscopy as a diagnostic tool in studying microbial communities. In: Cohen Y, Castenholz RW, Halyorson HO (eds) Microbial mats: Stromatolites. Alan R Liss, New York, pp 23–38

    Google Scholar 

  • Trüper HG, Imhoff JF (1981) The genus Ectothiorhodospira. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 274–278

    Google Scholar 

  • Trüper HG, Pfennig N (1981) Characterization and identification of the anoxygenic phototrophic bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 299–312

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Amelio, E.D., Cohen, Y. & Des Marais, D.J. Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles of Microcoleus chthonoplastes in hypersaline cyanobacterial mats. Arch. Microbiol. 147, 213–220 (1987). https://doi.org/10.1007/BF00463477

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00463477

Key words

Navigation