Skip to main content
Log in

Chroococcus S24 and Chroococcus N41 (cyanobacteria): morphological, biochemical and genetic characterization and effects of water stress on ultrastructure

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Two strains of desiccation-tolerant coccoid cyanobacteria, Chroococcus S24, a marine form, and Chroococcus N41, a cryptoendolith isolated from a hot-desert rock, have been characterized.

The mol % DNA base compositions of the strains are 47.1 and 48.9% respectively. Plasmid DNA was not detected in either strain. The pigment contents and nutritional characteristics of the strains are identical. Both lack phycoerythrinoid pigments and, in culture, behave as slow-growing halotolerant marine forms with elevated requirements for Na+, Cl, Mg2+ and Ca2+. Sucrose was the only carbon source of those tested that supported photoheterotrophic growth. Each strain synthesizes nitrogenase under anaerobic conditions but not in air. Morphologically the two strains are indistinguishable. They are considered to be independent isolates of the same cyanobacterial species.

Chroococcus N41 was studied in detail with the electron microscope. When brought to equilibrium at matric water potentials of-168 MPa and lower (to-673 MPa=c0.12a w) the protoplast shrinks, but the cells maintain the same size and diameter as those at-2,156 kPa (MN medium; control); the sheath expands and remains attached to the cell wall outer membrane by fibrils. The cell wall, cell membrane, thylakoid membranes, cyanophycin granules and carboxysomes appeared intact in desiccated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCMU:

3-3,4-dichlorophenyl 1,1-dimethylurea

SCE:

18% w/v sorbitol, 0.1 M sodium citrate, 10 mM EDTA

SDS:

sodium dodecyl sulfate

SSC:

0.15 M NaCl, 15 mM sodium citrate, PH 7.0

STET, 8% w/v sucrose, 5% w/v Triton X-100:

50 mM EDTA, 50 mM TRIS, pH 8.0

TSED, 25% w/v sucrose, 1 mM EDTA:

50 mM TRIS, pH 8.0

References

  • Allen MM (1968) Simple conditions for growth of unicellular blue-green algae on plates. J Phycol 4:1–4

    Google Scholar 

  • Allen MM (1972) Mesosomes in blue-green algae. Arch Mikrobiol 84:199–206

    PubMed  Google Scholar 

  • Bewley JD (1979) Physiological aspects of desiccation tolerance. Annu Rev Plant Physiol 30:195–238

    Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nuc Acids Res 7:1513–1523

    Google Scholar 

  • Bold HC, Parker BC (1962) Some supplementary attributes in the classification of Chlorococcum species. Arch Mikrobiol 42:267–288

    PubMed  Google Scholar 

  • Brock TD (1975) Effect of water potential on a Microcoleus (Cyanophyceae) from a desert crust. J Phycol 11:316–320

    Google Scholar 

  • Cardemil L, Wolk CP (1979) The polysaccharides from heterocyst and spore envelopes of a blue-green alga. Structure of the basic repeating unit. J Biol Chem 254:736–741

    PubMed  Google Scholar 

  • Cox G, Benson D, Dwarte DM (1981) Ultrastructure of a cave-wall cyanophyte-Gloeocapsa NS4. Arch Microbiol 130:165–174

    Google Scholar 

  • Crosa JH, Falkow S (1981) Plasmids. In: Gerhardt P (ed) Manual of methods for general bacteriology. American Society for Microbiology, Washington DC, pp 266–282

    Google Scholar 

  • Drews G, Weckesser J (1982) Function, structure and composition of cell walls and external layers. In: Carr NG, Whitton BA (eds) The biology of Cyanobacteria. Black well Scientific Publications, Oxford London Edinburg Boston Melbourne, pp 333–357

    Google Scholar 

  • Drouet F, Daily NA (1956) Revision of the coccoid Myxophyceae. Butler Univ Bot Stud 12:218

    Google Scholar 

  • Echlin P (1964) Intra-cytoplasmic membranous inclusions in the blue-green alga. Anacystis nidulans. Arch Mikrobiol 49:267–274

    PubMed  Google Scholar 

  • Edwards MR, Berns DS, Ghiorse NC, Holt SC (1968) Ultrastructure of the thermophilic blue-green alga, Synechococcus lividus Copeland. J Phycol 4:283–298

    Google Scholar 

  • Fogg GE, Stewart WDP, Fay P, Walsby AE (1973) The blue-green algae. Academic Press, London

    Google Scholar 

  • Friedmann EI (1971) Light and scanning electron microscopy of the endolithic desert algal habitat. Phycologia 10:411–428

    Google Scholar 

  • Friedmann I, Lipkin Y, Ocampo-Paus R (1967) Desert algae of the Negev (Israel). Phycologia 6:185–200

    Google Scholar 

  • Frischknecht K, Schneider K (1979) Physiological performances of the blue-green alga Anacystis nidulans in a continuous turbidostat fermentor culture. Arch Microbiol 120:215–221

    Google Scholar 

  • Geitler L (1932) Cyanophyceae. In: Rabenhorst's Krytogamenflora, 14. Akademische Verlagsgesellschaft, Leipzig, pp 1–1196

    Google Scholar 

  • Golecki JRT, Drews G (1982) Supramolecular organization and composition of membranes. In: Carr NG, Whitton BA (eds) The biology of Cyanobacteria. Black well Scientific Publications, Oxford London Edinburgh Boston Melbourne, pp 125–141

    Google Scholar 

  • Holmes DS, Quigley M (1981) A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 114:193–197

    PubMed  Google Scholar 

  • Ingram LO, Thurston EL (1970) Cell division in morphological mutants of Agmenellum quadruplicatum strain BG-1. Protoplasma Wien 71:55–75

    Google Scholar 

  • Kratz W, Myers J (1955) Nutrition and growth of several blue-green algae. Amer J Bot 42:282–287

    Google Scholar 

  • Laddaga RA, Macleod RA (1982) Effects of wash treatments on the ultrastructure and lysozyme permeability of the outer membrane of various marine and two terrestrial gram negative bacteria. Can J Microbiol 28:318–324

    Google Scholar 

  • Lounatmaa K, Vaara T, Österlund K, Vaara M (1980) Ultrastructure of the cell wall of a Synechocystis strain. Can J Microbiol 26:204–208

    PubMed  Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Google Scholar 

  • Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118

    PubMed  Google Scholar 

  • Mazur P (1980) Limits to life at low temperatures and at reduced water contents and water activities. Origins of Life 10:137–159

    PubMed  Google Scholar 

  • Niklowitz W, Drews G (1956) Beiträge zur den Blaualgen. I. Untersuchungen zur Substruktur von Phormidium uncinatum Gom. Arch Mikrobiol 24:134–146

    PubMed  Google Scholar 

  • Ocampo RC (1973) Experimental taxonomy of Chroococcales. Ph. D. Thesis, Florida State University

  • Peterson RB, Burris RH (1976) Properties of heterocysts isolated with colloidal silica. Arch Microbiol 108:35–40

    PubMed  Google Scholar 

  • Potts M, Friedmann EI (1981) Effects of water stress on cryptoendolithic cyanobacteria from hot-desert rocks. Arch Microbiol 130:267–271

    Google Scholar 

  • Potts M, Krumbein WE, Metzger J (1978) Nitrogen fixation in anaerobic sediments determined by acetylene reduction, a new 15N field assay and simultaneous total N and 15N determinations. In: Krumbein WE (ed) Environmental biogeochemistry. Ann Arbor Sci, Ann Arbor, pp 753–769

    Google Scholar 

  • Rippka R (1972) Photoheterotrophy and chemoheterotrophy among unicellular blue-green algae. Arch Mikrobiol 87:93–98

    Google Scholar 

  • Rippka R, Waterbury JB (1977) The synthesis of nitrogenase by nonheterocystous cyanobacteria. FEMS Microbiol Letts 2:83–86

    Article  Google Scholar 

  • Rippka R, Waterbury J, Cohen-Bazire G (1974) A cyanobacterium which lacks thylakoids. Arch Microbiol 100:419–436

    Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of Cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Scott JH, Schekman R (1980) Lyticase: Endoglucanase and protease activities that act together in yeast cell lysis. J Bacteriol 142:414–423

    PubMed  Google Scholar 

  • Stacey G, Van Baalen C, Tabita FR (1977) Isolation and characterization of a marine Anabaena sp. capable of rapid growth on molecular nitrogen. Arch Microbiol 114:297–201

    Google Scholar 

  • Stam WT, Venema G (1977) The use of DNA-DNA hybridization for determination of the relationship between some blue-green algae (Cyanophyceae). Acta Bot Neerl 26:327–342

    Google Scholar 

  • Stevens SE, Balkwill DL, Paone DAM (1981) The effects of nitrogen on the ultrastructure of the cyanobacterium Agmenellum quadruplicatum. Arch Microbiol 130:204–212

    Google Scholar 

  • Stewart WDP (1980) Some aspects of structure and function in N2-fixing cyanobacteria. Ann Rev Microbiol 34:497–536

    Article  Google Scholar 

  • Trüper HG, Krämer J (1981) Principles of characterization and identification of prokaryotes. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes, vol 1. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Vaara T (1982) The outermost surface structures in chroococcacean cyanobacteria. Can J Microbiol 28:929–941

    Google Scholar 

  • Van Baalen C (1962) Studies on marine blue-green algae. Bot Mar 4:129–139

    Google Scholar 

  • Van Eykelenburg C (1979) The ultrastructure of Spirulina platensis in relation to temperature and light intensity. Antonie van Leeuwenhoek 45:369–390

    PubMed  Google Scholar 

  • Waterbury JB, Stanier RY (1978) Patterns of growth and development in pleurocapsalean cyanobacteria. Microbiol Rev 42:2–44

    PubMed  Google Scholar 

  • Weare NM, Benemann JR (1973) Nitrogen fixation by Anabaena cylindrica. 1. Localization of nitrogen fixation in the heterocysts. Arch Mikrobiol 90:323–332

    Google Scholar 

  • Whitton BA, Peat A (1969) On Oscillatoria redekei Van Goor. Arch Mikrobiol 68:362–376

    PubMed  Google Scholar 

  • Whitton BA, Donaldson A, Potts M (1979) Nitrogen fixation by Nostoc colonies in terrestrial environments of Aldabra Atoll, Indian Ocean. Phycologia 18:278–287

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Certain of these data were reported to the XIII International Congress of Microbiology, Boston, 1982

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potts, M., Ocampo-Friedmann, R., Bowman, M.A. et al. Chroococcus S24 and Chroococcus N41 (cyanobacteria): morphological, biochemical and genetic characterization and effects of water stress on ultrastructure. Arch. Microbiol. 135, 81–90 (1983). https://doi.org/10.1007/BF00408014

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00408014

Key words

Navigation