Skip to main content
Log in

Abstract

A monotone structure (\(\mathfrak{A} ;\);μ) consists of a structure\(\mathfrak{A}\) and a monotone systemμ over the domain of\(\mathfrak{A}\).L(Q n) is\(L_{\omega \omega }\), enlarged by a newn-ary quantifierQ n.\(Q^n \overline x \varphi \left( {\overline x } \right)\) says in (\(\mathfrak{A}\);μ) that there isUμ such thatϕ[ā] is valid in (\(\mathfrak{A}\);μ) for allāU n. If

is a class of monotone structures,

means thatϕ is valid in all expansions of monotone structures in

. We show for the class\(\mathfrak{u}\) of all ultrafilters that interpolation with respect to

holds forL(Q n) exactly in casen=1. Then we prove for a large class of

(e.g. the class of topological groups) thatL(Q n) satisfies interpolation with respect to

for alln ≧ 1. Counterexamples indicate that the class of

is sharp in some sense. Finally the results are carried over to certain topological structures and the interior quantifiersI n instead ofQ n, thereby generalizing results of Makowsky/Ziegler and Sgro, and to a multidimensional type of monotone structures including uniform spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Ebbinghaus, H.-D.: Über für-fast-alle Quantoren. Arch. math. Logik12, 179–193 (1969).

    MATH  MathSciNet  Google Scholar 

  • Erdös, P.: Graph theory and probability. Canad. J. Math.11, 34–38 (1959).

    MATH  MathSciNet  Google Scholar 

  • Flum, J., Ziegler, M.: Topological model theory. Lecture Notes in Mathematics, Vol. 769. Berlin, Heidelberg, New York: Springer 1980.

    Google Scholar 

  • Fuhrken, G.: Skolem type normal forms for first order languages with a generalized quantifier. Fund. Math.54, 291–302 (1964).

    MATH  MathSciNet  Google Scholar 

  • Garavaglia, S.: Model theory of topological structures. Ann. Math. Logic14, 13–37 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  • Magidor, M., Malitz, J.: Compact extensions ofL(Q). Ann. Math. Logic11, 217–261 (1977).

    Article  MathSciNet  Google Scholar 

  • Makowsky, J.A., Tulipani, S.: Some model theory for monotone quantifiers. Arch. math. Logik18, 115–134 (1977).

    Article  MathSciNet  Google Scholar 

  • Makowsky, J.A., Ziegler, M.: Topological model theory with an interior operator. Arch. math. Logik21, 37–54 (1981).

    MathSciNet  Google Scholar 

  • Sgro, J.: Completeness theorems for continuous functions and product topologies. Israel J. Math.25, 249–272 (1976).

    MATH  MathSciNet  Google Scholar 

  • Sgro, J.: Completeness theorems for topological models. Ann. Math. Logic11, 173–193 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  • Sgro, J.: The interior operator logic and product topologies. Transactions of the American Math. Soc.258, 99–112 (1980).

    MATH  MathSciNet  Google Scholar 

  • Slomson, A.B.: Some problems in mathematical logic. Thesis, Oxford 1967.

  • Ziegler, M.: A language for topological structures which satisfies a Lindström theorem. Bull. Am. Math. Soc.82, 568–570 (1976).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebbinghaus, H.D., Ziegler, M. Interpolation in Logiken monotoner systeme. Arch math Logik 22, 1–17 (1980). https://doi.org/10.1007/BF02318022

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02318022

Keywords

Navigation