Skip to main content
Log in

Simulation of models involving mixed selfing and random mating

II. Effects of selection and linkage in finite populations

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Summary

The joint effects of linkage, inbreeding, and drift due to finite population size were investigated in terms of population changes under selection involving gene interaction. Six-locus models with the same amount of recombination between adjacent pairs of loci, mixed selfing and random mating, and selection of basically three forms (heterotic, optimizing and mixed optimum-heterotic) were used for Monte Carlo simulation. The results were primarily described in terms of certain measures of gene dispersion, genetic variability, gametic unbalance (linkage disequilibrium) and the approach to stable gene frequency equilibria. Under both cumulative and diminutive heterosis models, a steady state with polymorphisms could be attained with random gene dispersion being small and different replicate populations evolved high degrees of gametic unbalance in the direction of excess of either coupling or repulsion phase linkages depending on the random drift in gene frequencies. Under optimum models, on the other hand, all populations approached steady decay toward fixation at all loci although gene dispersion was governed by rather complex interactions between the parameters of selfing, linkage and selection intensity. Gene dispersion was not necessarily proportionately greater with the higher levels of inbreeding. An excess of repulsion linkages with mean population fitness approaching unity was noted in all runs with the optimum models, more so with tight linkage and heavy inbreeding. Any asymmetry in the sense of selection favoring one or the other allele tends to reinforce gene fixation particularly under inbreeding. Heterozygote advantage, on the other hand, seemed to play a relatively greater role under inbreeding in terms of retaining heterozygosity. Mixed optimum-heterotic models provide a favorable compromise between these conflicting attributes of multilocus systems in terms of the maintenance of polymorphisms and the maximization of fitness in relation to certain optimal linked gene complexes. In general, for moderate to large population size these results are, as expected, in line with those reported previously for two-locus deterministic models.

Zusammenfassung

Die gemeinsamen Effekte der Koppelung, Inzucht und zufälligen genetischen Drift werden hinsichtlich der Populationsveränderung unter Selektion unter Einschluß von Geninterktionen untersucht. Für die Monte-Carlo-Simulationen wurde ein 6-Locus-Modell mit einem einheitlichen Ausmaß der Rekombination zwischen benachbarten Paaren von Loci, gemischter Selbstung und Panmixie und dreier Grundtypen der Selektion (heterotisch, optimalisierend und gemischt optimalisierend-heterotisch) benutzt. Die Ergebnisse werden in erster Linie in Termini der Gendispersion, der genetischen Variabilität, der Gameten-Unbalance (Koppelungs-Ungleichgewicht) und der Näherung an stabile Genfrequenz-Gleichgewichte beschrieben. Sowohl unter kumulativen wie auch unter diminutiven Heterosis-Modellen kann ein stabiler Zustand des Polymorphismus erreicht werden, wobei die zufällige Gendispersion klein ist und verschiedene wiederholte Populationen einen hohen Grad gametischer Unbalance entwickeln, die sich in einem Überschuß entweder der Attraktionsoder der Repulsionsphase in Abhängigkeit von der zufälligen Drift in der Genfrequenz äußert. Auf der anderen Seite erleiden alle Populationen unter dem Optimum-Modell einen stetigen Verfall in Richtung auf Fixierung aller Loci, obwohl die Gendispersion durch ziemlich komplexe Interaktionen zwischen Parametern für Selbstung, Koppelung und Selektionsintensitäten beeinflußt wird. Die Gendispersion war bei höherem Inzuchtgrad nicht notwendigerweise höher. In allen Läufen mit Optimum-Modellen, in denen sich die mittlere Populations-Fitness dem Wert 1 nähert, wurde ein Überschuß von Typen mit Repulsionskoppelung beobachtet, vor allem bei enger Koppelung und starker Inzucht. Jede Asymmetrie in dem Sinne, daß Selektion das eine oder das andere Allel begünstigt, begünstigt zugleich die Genfixierung besonders bei Vorliegen von Inzucht. Auf der anderen Seite scheint ein Heterozygotenvorteil hinsichtlich der Erhaltung der Heterozygotie eine relativ größere Rolle bei Vorliegen von Inzucht zu spielen. Gemischte Optimum-heterotische-Modelle liefern einen Kompromiß zwischen den divergierenden Attributen multilokaler Systeme hinsichtlich der Erhaltung der Polymorphismen und der Maximalisierung der Fitness im Vergleich zu bestimmten optimal gekoppelten Genkomplexen. Im allgemeinen stimmen diese Ergebnisse, wie erwartet, bei mittlerem bis großem Populationsumfang mit denen früher für deterministische 2-Locus-Modelle berichteten überein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature

  1. Allard, R. W., andP. E. Hansche: Some parameters of population variability and their implications in plant breeding. Adv. Agron.16, 281–325 (1964).

    Google Scholar 

  2. Allard, R. W., andS. K. Jain: Population studies in predominantly self-pollinated species. II. Analysis of quantitative genetic changes in a bulk-hybrid population of barley. Evolution16, 90–101 (1962).

    Google Scholar 

  3. Allard, R. W., S. K. Jain, andP. L. Workman: The genetics of inbreeding species. Adv. Genetics (in press).

  4. Bellmann, K., andH. Ahrens: Modellpopulationen in der Selektionstheorie und einige Ergebnisse aus Simulationsstudien. Der Züchter36, 172–185 (1966).

    Google Scholar 

  5. Bodmer, W. F., andJ. Felsenstein: Linkage and selection: Theoretical analysis of the deterministic two locus random mating model. Genetics57, 237–265 (1967).

    Google Scholar 

  6. Bodmer, W. F., andP. A. Parsons: Linkage and recombination in evolution. Adv. Genetics11, 1–99 (1962).

    Google Scholar 

  7. Cockerham, C. C.: Group inbreeding and coancestry. Genetics56, 89–104 (1967).

    Google Scholar 

  8. Felsenstein, J.: The effect of linkage on directional selection. Genetics52, 349–363 (1965).

    Google Scholar 

  9. Fraser, A. S.: Gametic disequilibrium in multigenic systems under normalizing selection. Genetics55, 507–512 (1967).

    Google Scholar 

  10. Fraser, A. S., andD. G. Burnell: Computer Genetics (in press). New York: McGraw-Hill 1968.

    Google Scholar 

  11. Fraser, A. S., D. Miller, andD. Burnell: Polygenic balance. Nature (London)206, 114 (1965).

    Google Scholar 

  12. Gill, J. L.: Effects of finite size on selection advance in simulated genetic populations. Austral. J. Biol. Sci.18, 599–617 (1965).

    Google Scholar 

  13. Gill, J. L., andB. A. Clemmer: Effects of selection and linkage on degree of inbreeding. Austral. J. Biol. Sci.19, 307–317 (1966).

    Google Scholar 

  14. Hayman, B. I.: Mixed selfing and random mating when homozygotes are at a disadvantage. Heredity7, 185–192 (1953).

    Google Scholar 

  15. Jain, S. K., andR. W. Allard: The nature and stability of equilibria under optimizing selection. Proc. Nat. Acad. Sci. U.S.54, 1436–1443 (1965).

    Google Scholar 

  16. Jain, S. K., andR. W. Allard: The effects of linkage, epistasis and inbreeding on population changes under selection. Genetics,53, 633–659 (1966).

    Google Scholar 

  17. Jain, S. K., andC. A. Suneson: Increased recombination and selection in barley populations carrying a male sterility factor. I. Quantitative variability. Genetics54, 1215–1224 (1966).

    Google Scholar 

  18. Karlin, S., J. McGregor, andW. F. Bodmer: The rate of production of recombinants between linked genes in finite populations. Proc. 5th Berkeley Symp. Probab. Stat. (in press).

  19. Kimura, M.: A model of a genetic system which leads to closer linkage by natural selection. Evolution10, 278–287 (1956).

    Google Scholar 

  20. Kimura, M.: Attainment of quasi linkage equilibrium when gene frequencies are changing by natural selection. Genetics52, 875–890 (1965).

    Google Scholar 

  21. Latter, B. D. H.: The interaction between effective population size and linkage intensity under artificial selection. Genet. Res.7, 313–323 (1966).

    Google Scholar 

  22. Lewontin, R. C.: The interaction of selection and linkage. I. General considerations; heterotic models. Genetics49, 49–67 (1964a).

    Google Scholar 

  23. Lewontin, R. C.: The interaction of selection and linkage. II. Optimum models. Genetics50, 757–782 (1964b).

    Google Scholar 

  24. Lewontin, R. C., andP. Hull: The interaction of selection and linkage. III. Synergistic effect of blocks of genes. Der Züchter37, 93–98 (1967).

    Google Scholar 

  25. Lewontin, R. C., andK. Kojima: The evolutionary dynamics of complex polymorphisms Evolution14, 458–472 (1960).

    Google Scholar 

  26. Moran, P. A. P.: Statistical processes of evolutionary theory. Oxford: Oxford Univ. Press 1962.

    Google Scholar 

  27. Narain, P.: Effect of linkage on homozygosity of a population under mixed selfing and random mating. Genetics54, 303–314 (1966).

    Google Scholar 

  28. Nei, M.: Effects of linkage and epistasis on the equilibrium frequencies of lethal genes. I. Linkage equilibrium. Japan. J. Genet.39, 1–6 (1964).

    Google Scholar 

  29. Wöhrmann, K., andR. W. Allard: Directional and stabilizing selection in a population of lima beans. Crop Sci. (in press).

  30. Wright, S.: The genetics of quantitative variability. In: Quantitative Inheritance, pp. 5–41, ed.E.C.R. Reeve et al., Agric. Res. Council London (1952).

    Google Scholar 

  31. Wright, S.: Factor interaction and linkage in evolution. Proc. Roy. Soc. London B162, 80–104 (1965).

    Google Scholar 

  32. Wright, S.: “Surfaces” of selective value. Proc. Nat. Acad. Sci. U.S.58, 165–172 (1967).

    Google Scholar 

  33. Young, S. S. Y.: Computer simulation of directional selection in large populations. I. The programme, the additive and the dominance models. Genetics53, 189–205 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by a grant (GM 10476) from the U.S. Public Health Service. I am indebted to Dr.D. G. Burnell for his generous help in the use of his computer program, and to Drs.R. W. Allard andA. S. Fraser for many helpful suggestions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, S.K. Simulation of models involving mixed selfing and random mating. Theoret. Appl. Genetics 38, 232–242 (1968). https://doi.org/10.1007/BF01245623

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01245623

Keywords

Navigation