Skip to main content
Log in

Projected Tamm Dancoff theory for diabolical pair transfer in rotating nuclei

  • Published:
Zeitschrift für Physik A Hadrons and Nuclei

Abstract

Angular momentum projected Tamm Dancoff theory in a realistic configuration space is used to investigate the occurrence of diabolical points and the connected Berry phase in the rotational spectra of well deformed Yb- and Hf-nuclei. Specific nuclei are predicted, where we expect diabolic pair transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Johnson, A., Ryde, H., Sztarkier, J.: Phys. Lett.34 B, 605 (1971)

    Google Scholar 

  2. Johnson, A., Ryde, H., Hjorth, S.A.: Nucl. Phys. A179, 753 (1972)

    Google Scholar 

  3. Lieder, R.M., Ryde, H.: Phys. Rev. Lett.41, 1532 (1978)

    Google Scholar 

  4. Siemens, P.J., Sobiczewski, A.: Phys. Lett41 B, 16 (1972)

    Google Scholar 

  5. Banerjee, B., Mang, H.J., Ring, P.: Nucl. Phys. A215, 366 (1973)

    Google Scholar 

  6. Grover, J.R.: Phys. Rev.157, 832 (1967)

    Google Scholar 

  7. Ring, P., Mang, H.J.: Phys. Rev. Lett.33, 1174 (1974)

    Google Scholar 

  8. Bengtsson, R., Frauendorf, S.: Nucl. Phys. A327, 139 (1979)

    Google Scholar 

  9. Neumann, J.v., Wigner, W.: Z. Phys.30, 467 (1929)

    Google Scholar 

  10. Berry, M.V.: Proc. Roy. Soc. A392, 45 (1984)

    Google Scholar 

  11. Bentsson, R., Hamamoto, I., Mottelson, B.R.: Phys. Lett73 B, 259 (1979)

    Google Scholar 

  12. Nikam, R.S., Ring, P.: Phys. Rev. Lett.58, 980 (1987)

    Google Scholar 

  13. Frisk, H., Szymanski, Z.: Phys. Lett.172 B, 272 (1986)

    Google Scholar 

  14. Gruemmer, F., Schmid, K.W., Faessler, A.: Nucl. Phys. A236, 1 (1979)

    Google Scholar 

  15. Simon, B.: Phys. Rev. Lett.51, 2167 (1983)

    Google Scholar 

  16. Pancharatnam, S.: Proc. Ind. Acad. Sci. A44, 247 (1956)

    Google Scholar 

  17. Longuet-Higgins, H., Opik, U., Pryce, M., Sack, R.: Proc. Roy. Soc. (London) A224, 1 (1958)

    Google Scholar 

  18. Longuet-Higgins, H.: Adv. Spectrosc.2, 429 (1961)

    Google Scholar 

  19. Herzberg, G., Longuet-Higgins, H.: Disc. Faraday Soc.33, 77 (1963)

    Google Scholar 

  20. Stone, A.J.: Proc. Roy. Soc. A351, 141 (1976)

    Google Scholar 

  21. Mead, C.A.: J. Chem. Phys.70, 2276 (1976)

    Google Scholar 

  22. Mead, C.A., Truhlar, D.G.: J. Chem. Phys.70, 2284 (1979)

    Google Scholar 

  23. Mead, C.A.: Chem. Phys.49, 23, 33 (1980)

    Google Scholar 

  24. Nikam, R.S., Ring, P., Canto, L.F.: Z. Phys. A — Atomic Nuclei324, 241 (1986)

    Google Scholar 

  25. Nikam, R.S., Ring, P., Canto, L.F.: Phys. Lett.185 B, 269 (1987)

    Google Scholar 

  26. Canto, L.F., Donangelo, R., Nikam, R.S., Ring, P.: Phys. Lett.192 B, 4 (1987)

    Google Scholar 

  27. Canto, L.F., Donangelo, R., Guidry, M.W., Farhan, A.R., Rasmussen, J.O., Ring, P., Stoyer, M.A.: Phys. Lett241 B, 295 (1990)

    Google Scholar 

  28. Boer, J. de, Dasso, C.H., Pollarolo, G.: Z. Phys. A — Atomic Nuclei335, 199 (1990)

    Google Scholar 

  29. Rowley, N., Pal, K.F., Nagarajan, M.A.: Phys. Lett.201B, 187 4(1988)

    Google Scholar 

  30. Rowley, N., Pal, K.F., Nagarajan, M.A.: Nucl. Phys. A493, 13 (1989)

    Google Scholar 

  31. Vigezzi, E., Bes, D.R., Broglia, R.A., Frauendorf, S.: Phys. Rev. C38, 1448 (1988)

    Google Scholar 

  32. Hasegawa, M., Tazaki, S., Maramatsu, K.: Phys. Lett.226 B, 1 (1989)

    Google Scholar 

  33. Nikam, R.S., Ring, P., Sun, Y., Marshalek, E.R.: Phys. Lett.235 B, 215 (1990)

    Google Scholar 

  34. Hamamoto, I.: Nucl. Phys. A271, 15 (1976)

    Google Scholar 

  35. Ottaviani, P.L., Savoia, M.: Phys. Rev.187, 1306 (1969)

    Google Scholar 

  36. Gambhir, Y.K., Rimini, A., Weber, T.: Phys. Rev.188, 1573 (1969)

    Google Scholar 

  37. Kleber, M.: Z. Phys.231, 421 (1970)

    Google Scholar 

  38. Allaart, K., Gunsteren, W.F. Van: Nucl. Phys. A234, 53 (1974)

    Google Scholar 

  39. Hara, K., Iwasaki, S., Tanabe, K.: Nucl. Phys. A332, 69 (1979)

    Google Scholar 

  40. Schmid, K.W., Gruemmer, F., Faessler, A.: Phys. Rev. C29, 291 (1984)

    Google Scholar 

  41. Schmid, K.W., Gruemmer, F.: Rep. Prog. Phys.50, 731 (1987)

    Google Scholar 

  42. Aharonov, Y., Anandan, J.: Phys. Rev. Lett.58, 1593 (1987)

    Google Scholar 

  43. Hara, K., Iwasaki, S.: Nucl. Phys. A332, 61 (1979)

    Google Scholar 

  44. Schmid, K.W., DoDang, G.: Phys. Rev. C15, 1515 (1977)

    Google Scholar 

  45. Iwasaki, S., Hara, K.: Prog. Theor. Phys.68, 1782 (1982)

    Google Scholar 

  46. Ring, P., Schuck, P.: The nuclear manybody problem. Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  47. Federschmidt, C., Ring, P.: Nucl. Phys. A435, 110 (1985)

    Google Scholar 

  48. Onishi, N., Yoshida, S.: Nucl. Phys.80, 367 (1966)

    Google Scholar 

  49. Balian, R., Brezin, E.: Nuovo. Cimento64 B, 37 (1969)

    Google Scholar 

  50. Kumar, K., Baranger, M.: Nucl. Phys. A110, 529 (1968)

    Google Scholar 

  51. Baranger, M., Kumar, K.: Nucl. Phys. A110, 490 (1968)

    Google Scholar 

  52. Marshalek, E.R.: Nucl. Phys. A224, 245 (1974)

    Google Scholar 

  53. Egido, J.L., Mang, H.J., Ring, P.: Nucl. Phys. A339, 390 (1980)

    Google Scholar 

  54. Shurshikov, E.N. (ed.): Nucl. Data Sheets47, 469 (1986)

    Google Scholar 

  55. Ignatochkin, A.E. (ed.): Nucl. Data Sheets52, 380 (1987)

    Google Scholar 

  56. Zhou, C.M. (ed.): Nucl. Data Sheets50, 366 (1987)

  57. Wang, G.Q. (ed.): Nucl. Data Sheets51, 587 (1987)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. H.J. Mang on the occasion of his 60th birthday

To be precise, we have, in fact, three variables, the angular momentum and the particle numbers for protons and neutrons. For simplicity, however, we will consider in the following only isotope chains, i.e. chains with fixed proton number. The quantum numberA corresponds in this case to the neutron number

We greatfully acknowledge support from theKonrad Adenauer Stiftung and from theBundesministerium für Forschung und Technologie.

We would like to express our gratitude to K. Hara and S. Iwasaki for allowing us to use their projected TDA-code [45] as a basis for our calculations and we thank F.L. Canto, R. Donangelo, K. Hara, R.R. Hilton, H.J. Mang, and J.O. Rasmussen for extensive discussions during the course of this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Ring, P. & Nikam, R.S. Projected Tamm Dancoff theory for diabolical pair transfer in rotating nuclei. Z. Physik A - Hadrons and Nuclei 339, 51–62 (1991). https://doi.org/10.1007/BF01282933

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01282933

PACS

Navigation