Skip to main content
Log in

Shell model calculations with modified empirical Hamiltonian in the 132Sn region

  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

Using recent experimental information for the 132Sn region, an empirical Hamiltonian is obtained by some modifications of a Hamiltonian (CW5082) originally derived from the 208Pb region. Shell model calculations with the new Hamiltonian show a remarkable improvement in the predictive power when compared with the available experimental results. It overcomes many limitations of the CW5082 Hamiltonian in this region, specially for \(N\geq 84\) isotones. The calculated level spectra and B(E2) values with the new Hamiltonian, also compare well with the available results calculated with the CD-Bonn and SKX Hamiltonians, reflecting consistency in the wave function structure at least in the low-lying regions. An interesting behaviour of effective charges is revealed in this region. It is shown that a drastic reduction of proton effective charge is necessary for obtaining B(E2) values for the N = 84 isotones. Neutron effective charge is found to be in the range (0.62-0.72)e. We predict the spectroscopic properties of 135,136Sn not yet known experimentally. Further improvement of the modified Hamiltonian is also initiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Blomqvist, in Proceedings of the 4th International Conference on Nuclei Far from Stability (CERN, Geneva, 1981) p. 536.

  2. Sukhendusekhar Sarkar, M. Saha Sarkar, Phys. Rev. C 64, 014312 (2001) and references therein.

    Article  Google Scholar 

  3. B.A. Brown, A. Etchegoyen, W.D.M. Rae, N.S. Godwin, MSU-NSCL Report No. 524, 1985, unpublished.

  4. W.T. Chou, E.K. Warburton, Phys. Rev. C 45, 1720 (1992).

    Article  Google Scholar 

  5. D.C. Radford et al. , Phys. Rev. Lett. 88, 222501 (2002) and references therein.

    Article  Google Scholar 

  6. L. Coraggio et al. , Phys. Rev. C 65, 051306(R) (2002); F. Andreozzi et al. , Phys. Rev. C 56, R16 (1997).

    Article  Google Scholar 

  7. Sukhendusekhar Sarkar, Proceedings of the DAE-BRNS Symposium on Nuclear Physics (India), Vol. 45A (2002) p. 72.

  8. B. Fogelberg, K.A. Mezilev, H. Mach, V.I. Isakov, J. Slivova, Phys. Rev. Lett. 82, 1823 (1999).

    Article  Google Scholar 

  9. Data extracted using the NNDC On-line Data Service from ENSDF and XUNDL databases, file revised as of 22 November, 2002.

  10. W. Urban et al. , Eur. Phys. J. A 5, 239 (1999).

    Google Scholar 

  11. G. Audi, O. Bersillon, J. Blachot, A.H. Wapstra, Nucl. Phys. A 624, 1 (1997).

    Article  Google Scholar 

  12. A. Korgul et al. , Eur. Phys. J. A 7, 167 (2000).

    Article  Google Scholar 

  13. A. Korgul et al. , Eur. Phys. J. A 15, 181 (2002); B. Fornal et al. , Phys. Rev. C 63, 024322 (2001).

    Google Scholar 

  14. S.K. Saha et al. , Phys. Rev. C 65, 017302 (2001); C.T. Zhang et al. , Phys. Rev. Lett. 77, 3743 (1996).

    Google Scholar 

  15. W. Urban et al. , Phys. Rev. C 66, 044302 (2002).

    Article  Google Scholar 

  16. P. Bhattacharyya et al. , Eur. Phys. J. A 3, 109 (1998).

    Google Scholar 

  17. Jason Shergur et al. , Nucl. Phys. A 682, 493c (2001); J. Shergur et al. , Phys. Rev. C 65, 034313 (2002) and references therein.

    Article  Google Scholar 

  18. P. Hoff, J.P. Omtvedt, B. Fogelberg, H. Mach, M. Hellstróm, Phys. Rev. C 56, 2865 (1997).

    Article  Google Scholar 

  19. A. Korgul et al. , Eur. Phys. J. A 12, 129 (2001).

    Article  Google Scholar 

  20. W. Urban et al. , Phys. Rev. C 61, 041301(R) (2000).

    Article  Google Scholar 

  21. C.T. Zhang et al. , Z. Phys. A 358, 9 (1997).

    Article  Google Scholar 

  22. See, e.g., R.D. Lawson, Theory of the Nuclear Shell Model (Clarendon Press, Oxford, 1980).

  23. Internal Conversion Coefficient calculated using the tool in the NNDC On-line Data Service,

  24. J.P. Omtvedt, H. Mach, B. Fogelberg, D. Jerrestam, M. Hellström, L. Spanier, K.I. Erokhina, V.I. Isakov, Phys. Rev. Lett 75, 3090 (1995).

    Article  Google Scholar 

  25. B.H. Wildenthal, Duane Larson, Phys. Lett. B 37, 266 (1971).

    Article  Google Scholar 

  26. J. Terasaki, J. Engel, W. Nazarewicz, M. Stoitsov, Phys. Rev. C 66, 054313 (2002).

    Article  Google Scholar 

  27. P.J. Daly et al. , Phys. Rev. C 59, 3066 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saha Sarkar.

Additional information

Communicated by G. Orlandini

Received: 25 September 2003, Revised: 20 January 2004, Published online: 13 July 2004

PACS:

21.60.Cs Shell model - 21.10.-k Properties of nuclei, nuclear energy levels - 23.20.-g Electromagnetic transitions - 27.60. + j \(90 \leq A \leq 149\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, S., Sarkar, M.S. Shell model calculations with modified empirical Hamiltonian in the 132Sn region. Eur. Phys. J. A 21, 61–66 (2004). https://doi.org/10.1140/epja/i2003-10198-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2003-10198-7

Keywords

Navigation