Skip to main content
Log in

Effect of the nuclear hyperfine field on the 2D electron conductivity in the quantum Hall regime

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

The effect of the nuclear hyperfine interaction on the dc conductivity of 2D electrons under quantum Hall effect conditions at filling factor ν=1 is observed for the first time. The local hyperfine field enhanced by dynamic nuclear polarization is monitored via the Overhauser shift of the 2D conduction electron spin resonance in AlGaAs/GaAs multiquantum-well samples. The experimentally observed change in the dc conductivity resulting from dynamic nuclear polarization is in agreement with a thermal activation model incorporating the Zeeman energy change due to the hyperfine interaction. The relaxation decay time of the dc conductivity is, within experimental error, the same as the relaxation time of the nuclear spin polarization determined from the Overhauser shift. These findings unequivocally establish the nuclear spin origins of the observed conductivity change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. P. Slichter, Principles of Magnetic Resonance, Springer, Berlin, 1991.

    Google Scholar 

  2. J. Winter, Magnetic Resonance in Metals, Clarendon Press, Oxford, 1971.

    Google Scholar 

  3. I. D. Vagner and T. Maniv, Physica B 204, 141 (1995).

    Article  ADS  Google Scholar 

  4. V. Privman, I. D. Vagner, and G. Kventsel, Phys. Lett. A 239, 141 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  5. A. M. Dugaev, I. D. Vagner, and P. Wyder, JETP Lett. 64, 211 (1996).

    ADS  Google Scholar 

  6. B. Sapoval, D. Kaplan, and G. Lampel, Solid State Commun. 9, 1591 (1971).

    Article  Google Scholar 

  7. N. Gauss and A. G. M. Jansen, Czech. J. Phys. 46, S4, 2037 (1996).

    Google Scholar 

  8. M. Dobers, K. von Klitzing, J. Schneider, G. Weinmann, and K. PLoog, Phys. Rev. Lett. 72, 1650 (1988).

    ADS  Google Scholar 

  9. A. Berg, M. Dober, R. R. Gerhardts, and K. von Klitzing, Phys. Rev. Lett. 64, 2563 (1990).

    Article  ADS  Google Scholar 

  10. A. Schmeller, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 75, 4290 (1995).

    Article  ADS  Google Scholar 

  11. F. F. Fang and P. J. Stiles, Phys. Rev. 174, 823 (1968).

    Article  ADS  Google Scholar 

  12. D. Paget, G. Lampel, B. Sapoval, and V. I. Safarov, Phys. Rev. B 15, 5780 (1977).

    Article  ADS  Google Scholar 

  13. A. Abragam, The Principles of Nuclear Magnetism, Clarendon Press, Oxford, 1961, p. 191.

    Google Scholar 

  14. A. W. Overhauser, Phys. Rev. 92, 411 (1953).

    Article  ADS  MATH  Google Scholar 

  15. S. A. Vitkalov, JETP 82, 994 (1996).

    ADS  Google Scholar 

  16. D. Stein, K. von Klitzing, and G. Weimann, Phys. Rev. Lett. 51, 130 (1983).

    Article  ADS  Google Scholar 

  17. C. R. Bowers, Solid State Nucl. Magn. Reson. 11, 11 (1998), and references therein.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Pis’ma Zh. Éksp. Teor. Fiz. 69, No. 1, 58–63 (10 January 1999)

Published in English in the original Russian journal. Edited by Steve Torstveit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitkalov, S.A., Bowers, C.R., Simmons, J.A. et al. Effect of the nuclear hyperfine field on the 2D electron conductivity in the quantum Hall regime. Jetp Lett. 69, 64–70 (1999). https://doi.org/10.1134/1.567985

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.567985

PACS numbers

Navigation