Skip to main content
Log in

Mesoscopic magnetic inhomogeneities in the low-temperature phase and structure of Sm1−x SrxMnO3 (x < 0.5) perovskite

  • Solids
  • Structure
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Results are presented of studies of the 154Sm1−x SrxMnO3 system using neutron powder diffraction and small-angle polarized neutron scattering. An analysis of the neutron diffraction spectra showed that at T < 180 K these exhibit typical Jahn-Teller distortions of the manganese-oxygen octahedrons which persist under further cooling and on transition of the sample to a metallic magnetically ordered state. The magnetic contribution to the diffraction is satisfactorily described using the (A x (A y )F z ) model and is interpreted as the coexistence of ferromagnetic and antiferromagnetic phases. The exaggerated widths of the diffraction lines indicate an appreciable contribution from microdeformations evidently associated with the inhomogeneity of the system. Small-angle polarized neutron scattering showed that the Sm system for x = 0.4 and 0.25 is magnetically inhomogeneous in the low-temperature phase. Ferromagnetic correlations occur on scales of around 200 Å and having dimensions greater than 1000 Å which, combined with the temperature hysteresis of the magnetic small-angle scattering intensity observed for an x = 0.4 sample in the low-temperature phase, suggests that the transition is of a percolation nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955).

    Article  ADS  Google Scholar 

  2. É. L. Nagaev, Usp. Fiz. Nauk 166, 833 (1996) [Phys. Usp. 39, 781 (1996)].

    Google Scholar 

  3. E. L. Nagaev, Aust. J. Phys. 52, 305 (1999).

    ADS  Google Scholar 

  4. John B. Goodenough and J. S. Zhou, Nature 386, 229 (1997).

    Article  Google Scholar 

  5. J. M. de Teresa, M. R. Ibarra, J. Blasco, et al., Phys. Rev. B 54, 1187 (1996).

    ADS  Google Scholar 

  6. J. M. de Teresa, M. R. Ibarra, P. A. Algarabel, et al., Nature 386, 256 (1997).

    Article  Google Scholar 

  7. J. M. de Teresa, C. Ritter, M. R. Ibarra, et al., Phys. Rev. B 56, 3317 (1997).

    ADS  Google Scholar 

  8. C. Ritter, M. R. Ibarra, J. M. de Teresa, et al., Phys. Rev. B 56, 8902 (1997).

    Article  ADS  Google Scholar 

  9. M. Viret, H. Glattli, C. Fermon, et al., Europhys. Lett. 42, 301 (1998); Physica B (Amsterdam) 241–243, 430 (1998).

    Article  ADS  Google Scholar 

  10. S. Rosenkranz, R. Osborn, J. F. Mitchell, et al., Physica B (Amsterdam) 241–243, 448 (1997).

    Google Scholar 

  11. R. Caciuffo, J. Mira, M. A. Senaris-Rodríguez, et al., Europhys. Lett. 45, 399 (1999).

    Article  ADS  Google Scholar 

  12. B. C. Tofield and W. R. Scott, J. Solid State Chem. 10, 183 (1974).

    Article  ADS  Google Scholar 

  13. Q. Huang, A. Santoro, J. W. Lynn, et al., Phys. Rev. B 58, 2684 (1998).

    ADS  Google Scholar 

  14. P. G. Radaelli, D. E. Cox, M. Marezio, et al., Phys. Rev. Lett. 75, 4488 (1995); P. G. Radaelli, D. E. Cox, M. Marezio, and S.-W. Cheong, Phys. Rev. B 55, 3015 (1997).

    Article  ADS  Google Scholar 

  15. M. Hervieu, G. van Tendeloo, V. Caignaert, et al., Phys. Rev. B 53, 14274 (1996).

  16. L. M. Rodríguez-Martínez and J. Paul Attfield, Phys. Rev. B 54, R15622 (1996).

  17. Y. Moritomo, A. Machida, K. Matsuda, et al., Phys. Rev. B 56, 5088 (1997).

    ADS  Google Scholar 

  18. C. Martin, A. Maignan, M. Hervieu, and B. Raveau, Phys. Rev. B 60, 12191 (1999).

    Google Scholar 

  19. S. M. Dunaevskii, A. I. Kurbakov, V. A. Trunov, et al., Fiz. Tverd. Tela (St. Petersburg) 40, 1271 (1998) [Phys. Solid State 40, 1158 (1998)].

    Google Scholar 

  20. D. Yu. Chernyshov, V. A. Trounov, A. I. Kurbakov, et al., Mater. Sci. Forum 321–324, 812 (2000).

    Google Scholar 

  21. D. Yu. Chernyshov, A. I. Kurbakov, and V. A. Trounov, Physica B (Amsterdam) (in press).

  22. V. V. Runov, H. Glattli, G. P. Kopitsa, et al., Pis’ma Zh. Éksp. Teor. Fiz. 69, 323 (1999) [JETP Lett. 69, 353 (1999)].

    Google Scholar 

  23. V. Runov, H. Glattli, G. Kopitsa, et al., Physica B (Amsterdam) 276–278, 795 (2000).

    Google Scholar 

  24. A. Maignan, private communication.

  25. S. V. Grigor’ev, O. A. Gubin, G. P. Kopitsa, et al., Preprint No. 2028, PNPI (Petersburg Nuclear Physics Institute, Russian Academy of Sciences, 1995).

  26. I. D. Luzyanin, V. A. Ryzhov, D. Yu. Chernyshov, et al., Preprint No. 2342, PNPI (Petersburg Nuclear Physics Institute, Russian Academy of Sciences, 1999).

  27. J. Rodríguez-Carvajal, Physica B (Amsterdam) 192, 55 (1993).

    ADS  Google Scholar 

  28. A. M. Glazer, Acta Crystallogr. B B38, 3384 (1972).

    Google Scholar 

  29. J. Rodríguez-Carvajal, M. Hennion, F. Moussa, et al., Phys. Rev. B 57, R1389 (1998).

  30. A. N. Pirogov, A. E. Teplykh, V. I. Voronin, et al., Fiz. Tverd. Tela (St. Petersburg) 41, 103 (1999) [Phys. Solid State 41, 91 (1999)].

    Google Scholar 

  31. S. V. Maleev and V. A. Ruban, Zh. Éksp. Teor. Fiz. 62, 415 (1972) [Sov. Phys. JETP 35, 222 (1972)].

    Google Scholar 

  32. S. V. Grigor’ev, S. A. Klimko, S. V. Maleev, et al., Zh. Éksp. Teor. Fiz. 112, 2134 (1997) [JETP 85, 1168 (1997)].

    Google Scholar 

  33. A. I. Okorokov, V. V. Runov, A. D. Tret’yakov, et al., Zh. Éksp. Teor. Fiz. 100, 257 (1991) [Sov. Phys. JETP 73, 143 (1991)].

    Google Scholar 

  34. V. V. Runov, S. L. Ginzburg, B. P. Toperverg, et al., Zh. Éksp. Teor. Fiz. 94, 325 (1988) [Sov. Phys. JETP 67, 181 (1988)].

    Google Scholar 

  35. O. Halpern and T. Holstein, Phys. Rev. 59, 960 (1941).

    ADS  Google Scholar 

  36. F. Damay, C. Martin, M. Hervieu, et al., J. Magn. Magn. Mater. 184, 71 (1998).

    Article  ADS  Google Scholar 

  37. Michel van Veenendaal and A. J. Fedro, Phys. Rev. B 59, 1285 (1999).

    ADS  Google Scholar 

  38. A. Maignan, C. Martin, G. van Tendeloo, et al., Phys. Rev. B 60, 15214 (1999).

  39. M. Muroi and R. Street, Aust. J. Phys. 52, 205 (1999).

    ADS  Google Scholar 

  40. M. Uehara, S. Mori, C. H. Chen, and S.-W. Cheong, Nature 399, 560 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 118, No. 5, 2000, pp. 1174–1187.

Original Russian Text Copyright © 2000 by Runov, Chernyshov, Kurbakov, Runova, Trunov, Okorokov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Runov, V.V., Chernyshov, D.Y., Kurbakov, A.I. et al. Mesoscopic magnetic inhomogeneities in the low-temperature phase and structure of Sm1−x SrxMnO3 (x < 0.5) perovskite. J. Exp. Theor. Phys. 91, 1017–1028 (2000). https://doi.org/10.1134/1.1334992

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1334992

Keywords

Navigation