Skip to main content
Log in

Effect of a dust component on the rates of elementary processes in low-temperature plasmas

  • Plasma, Gases
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Elementary processes in dusty, beam-driven plasma discharges are studied experimentally and theoretically for the first time. A theoretical model is constructed for a beam-driven plasma containing macroscopic particles. The effect of macroscopic particles on the electron energy distribution function is estimated assuming a Coulomb field for the particles. The resulting rate of electron-ion recombination on the macroscopic particles is compared with the electron loss constant calculated from the electron energy distribution function with an electron absorption constant in the orbital-motion approximation. This approximation, which is valid in the collisionless case, is found to work satisfactorily beyond its range of applicability. The distributions of the charged particles and electric fields created by macroscopic particles in a helium plasma are determined. The experimental data demonstrate the importance of secondary emission by high-energy electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Langmuir, G. Found, and A. E. Dittmer, Science 60, 392 (1924).

    ADS  Google Scholar 

  2. G. S. Selwyn, J. Singh, and R. S. Bennet, J. Vac. Sci. Technol. A 7, 2758 (1989).

    ADS  Google Scholar 

  3. J. H. Chu and I. Lin, Phys. Rev. Lett. 72, 4009 (1994).

    ADS  Google Scholar 

  4. H. Thomas, G. E. Morfill, V. Demmel, J. Goree, B. Fewerbacher, and D. Mohlmann, Phys. Rev. Lett. 73, 652 (1994).

    ADS  Google Scholar 

  5. J. L. Dorier, Ch. Hollenstein, and A. A. Howling, J. Vac. Sci. Technol. A 13, 918 (1995).

    Article  ADS  Google Scholar 

  6. A. A. Fridman, L. Boufendi, T. Hbid, B. V. Potapkin, and A. Bouchoule, J. Appl. Phys. 79, 1303 (1996).

    Article  ADS  Google Scholar 

  7. V. A. Schweigert and I. V. Schweigert, J. Phys. D: Appl. Phys. 29, 655 (1996).

    Article  ADS  Google Scholar 

  8. H. H. Hwang and M. J. Kushner, Appl. Phys. Lett. 68, 3716 (1996).

    ADS  Google Scholar 

  9. J. E. Dougherty and D. B. Graves, J. Vac. Sci. Technol. A 11, 1126 (1993).

    ADS  Google Scholar 

  10. A. P. Nefedov, A. G. Khrapak, S. A. Khrapak, O. F. Petrov, and A. A. Samaryan, Zh. Éksp. Teor. Fiz. 112, 499 (1997) [JETP 85, 272 (1997)].

    Google Scholar 

  11. Th. Trotlenberg, A. Mezer, and A. Piel, Plasma Sources Sci. Technol. 4, 450 (1995).

    ADS  Google Scholar 

  12. J. B. Pierer, J. Goree, and R. A. Quinn, J. Vac. Sci. Technol. A 14, 519 (1996).

    ADS  Google Scholar 

  13. J. H. Chu, J. B. Du, and I. Lin, J. Phys. D 27, 296 (1994).

    Article  ADS  Google Scholar 

  14. S. Nunomura, N. Ohno, and S. Takamura, Jpn. J. Appl. Phys., Part 2 36, L949 (1997).

    Article  Google Scholar 

  15. A. M. Lipaev, V. I. Molotkov, A. P. Nefedov, O. F. Petrov, V. M. Torchinskii, V. E. Fortov, A. G. Khrapak, and S. A. Khrapak, Zh. Éksp. Teor. Fiz. 112, 2030 (1997) [JETP 85, 1110 (1997)].

    Google Scholar 

  16. V. V. Ivanov, T. V. Rakhimova, in Proc. of ICPIGXXXIII, Toulouse, France (1997), Vol. I, p. 182.

    Google Scholar 

  17. M. J. Mc. Caughey and M. J. Kushner, J. Appl. Phys. 69, 6952 (1991).

    ADS  Google Scholar 

  18. De-Zhen Wang, J. Q. Dong, and S. M. Mahajan, J. Phys. D: Appl. Phys. 30, 113 (1997).

    ADS  Google Scholar 

  19. G. I. Aponin, A. A. Besshaposhnikov, D. M. Kulakov, A. F. Pal, A. O. Serov, and N. V. Suetin, Aerosols C 4, 73 (1998).

    Google Scholar 

  20. C. Cason, J. F. Perkins, A. H. Werkheiser, and J. Duderstadt, AIAA J. 15, 1079 (1977).

    Google Scholar 

  21. V. V. Aleksandrov, E. P. Glotov, V. A. Danilychev, V. N. Koterov, and A. M. Soroka, Trudy FIAN 142, 46 (1983).

    Google Scholar 

  22. Yu. P. Raizer, Gas Discharge Physics, Springer, New York (1991) [Russian original, Nauka, Moscow (1987)].

    Google Scholar 

  23. S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982).

    Article  ADS  Google Scholar 

  24. W. L. Slattery, G. D. Doolen, and H. E. Dewitt, Phys. Rev. A 21, 2087 (1980).

    Article  ADS  Google Scholar 

  25. V. N. Tsytovich, Usp. Fiz. Nauk 167, 57 (1997).

    Google Scholar 

  26. Ya. K. Khodataev, R. Bingham, V. P. Tarakanov, and V. N. Tsytovich, Fiz. Plazmy 22, 1028 (1996) [Plasma Phys. Rep. 22, 932 (1996)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 115, 2020–2036 (June 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, V.V., Rakhimova, T.V., Serov, A.O. et al. Effect of a dust component on the rates of elementary processes in low-temperature plasmas. J. Exp. Theor. Phys. 88, 1105–1114 (1999). https://doi.org/10.1134/1.558899

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558899

Keywords

Navigation