Skip to main content
Log in

Surface chemistry-controlled tribological behavior of silicon and diamond

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

SEM tribometric experiments were performed with Si(100) vs. Si(100) interfaces in mode-rate vacuum to 850°C. The results are compared with similar tests previously completed with fine-cauliflowered PCD (PCDfcf) mated against itself, and polished C(100)-textured polycrystalline diamond (PCDC(100)) sliding against Si(100). All data agree with a hypothesis connecting the thermal desorption of adsorbates and wear with the generation of dangling bonds on the sliding surfaces. Linking of the counterfaces by the free radicals appears to be the main cause of high adhesion and friction. The high friction can be drastically reduced by dissociative chemisorption of certain passivating gaseous species condensing at sufficiently low surface temperatures. Strong circumstantial evidence continues to mount for the incremental reduction in high temperature friction being caused by surface reconstruction. Deconstruction of the sliding surfaces and the reemergence of high friction eventually occurs on discontinued heating, until the adsorbates chemisorb on the cooled surfaces. There, the friction drops to a level determined by the characteristic shear strength of the interfaces and the wear-induced increase in the real area of contact. The maximum friction measured at high temperatures in vacuum, indicative of the most intensive interaction of dangling bonds at the interface, scaled only approximately with the 1.8 times strength of the C-C versus the Si-Si bonds. The 1.6 experimental ratio is lower than the theoretical, reflecting the broad distribution of dangling bond energies (densities of surface trap states) for PCD and even for polished Si(100). The wear rate of Si(100) sliding against itself is about four-orders-of-magnitude higher (~ 2 × 10-12 m3/(Nm)) than that of unpolished PCDfcf vs. itself (4 × 10-16 m3/(Nm)) or rough and unpolished PCDC(100) wearing its polished version (8.5 × 10-16 m3/(Nm)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.N. Gardos, in: Synthetic Diamond: Emerging CVD Science and Technology, Electrochem. Soc. Monograph, eds. K.E. Spear and J.P. Dismukes (Wiley, New York, 1994)ch. 12, p. 419.

    Google Scholar 

  2. M.N. Gardos and K.V. Ravi, Dia. Films Technol. 4 (1994) 139.

    Google Scholar 

  3. M.D. Perry and J.A. Harrison, J. Phys. Chem. 99 (1995) 9960.

    Google Scholar 

  4. M. Ichikawa and T. Doi, Appl. Phys. Lett. 60 (1992) 1082.

    Google Scholar 

  5. S.M. Mokler, W.K. Liu, N. Ohtani and B.A. Joyce, Appl. Phys. Lett. 59 (1991) 3419.

    Google Scholar 

  6. Y. Homma, M. Suzuki and M. Tomita, Appl. Phys. Lett. 62 (1993) 3276.

    Google Scholar 

  7. F. Riesz, J. Cryst. Growth 140 (1994) 213.

    Google Scholar 

  8. M. Schlüter, K.M. Ho and M.L. Cohen, Phys. Rev. B 14 (1976) 550.

    Google Scholar 

  9. M. Suzuki, Y. Kudoh, Y. Homma and R. Kaneko, Appl. Phys. Lett. 58 (1991) 2225.

    Google Scholar 

  10. H.J.W. Zandvliet, H. Wormeester, D.J. Wentink, A. van Silfhout and H.B. Elswijk, Phys. Rev. Lett. 70 (1993) 2122.

    Google Scholar 

  11. I.G. Malik, S. Pirooz, L.W. Shive, A.J. Davenport and C.M. Vitus, J. Electrochem. Soc. 140 (1993) L75.

    Google Scholar 

  12. S.C. Sharma, R.C. Hyer, N. Hozhabri, M.F. Pas and S. Kim, Appl. Phys. Lett. 61 (1992) 1939.

    Google Scholar 

  13. M. Hanbücken, H. Neddermeyer and J.A. Venables, Surf. Sci. Lett. 137 (1984) L92.

    Google Scholar 

  14. S. Watanabe, K. Horiuchi and T. Ito, Jpn. J. Appl. Phys. 32 (1993) 4320.

    Google Scholar 

  15. M.N. Gardos and K.V. Ravi, in: 4th Int. Symp. on Diamond Materials, The Electrochem. Soc. Proc., Vol. 95–4 (1995) 415.

    Google Scholar 

  16. F.K. Men, W.E. Packard and M.B. Webb, Phys. Rev. Lett. 61 (1988) 2469.

    Google Scholar 

  17. M.B. Webb, F.K. Men, B.S. Swartzentruber, K. Kariotis and M.G. Lagally, Surf. Sci. 242 (1991) 23.

    Google Scholar 

  18. R.T. Howe, R.S. Muller, K.J. Gabriel and W.S.N. Trimmer, IEEE Spectrum 27 (7) (1990) 29.

    Google Scholar 

  19. M. Mehregany, S.D. Senturia and J.H. Lang, in: Tech. Digest, IEEE Solid State Sensor and Actuator Workshop, Hilton Head, NC, 1990.

    Google Scholar 

  20. Y.-C. Tai and R.S. Muller, Sensors and Actuators A21–A23 (1990) 180.

    Google Scholar 

  21. K.J. Gabriel, F. Behi, R. Mahadevan and M. Mehregany, Sensors and Actuators A21–A23 (1990) 184.

    Google Scholar 

  22. M.G. Lim, J.C. Chang, D.P. Schultz, R.T. Howe and R.M. White, in: Proc. IEEE MEMS '90 Conf., Napa Valley, CA, p. 82.

  23. M. Mehregany, S.M. Phillips, E.T. Hsu and J.H. Lang, in: Tech. Digest, 67h Int. Conf. Solid State Sensors and Actuators, Transducers '91 (IEEE), p. 59.

  24. K. Deng, W.H. Ko and G.M. Michal, in: Tech. Digest, 67h Int. Conf. Solid State Sensors and Actuators, Transducers '91 (IEEE), p. 213.

  25. M. Mehregany and S.D. Senturia, IEEE Trans. on Electron Devices 39 (1992) 1136.

    Google Scholar 

  26. A.P. Lee, A.P. Pisano and M.G. Lim, MRS Symp. Proc., Vol. 276 (1992) 67.

    Google Scholar 

  27. S.V. Didziulis, P.D. Fleischauer, B.L. Soriano and M.N. Gardos, Surf. Coat. Technol. 43/44 (1990) 652.

    Google Scholar 

  28. M.N. Gardos, Tribol. Lett. 1 (1995) 67.

    Google Scholar 

  29. M. Niwano, Y. Kimura and N. Miyamoto, Appl. Phys. Lett. 65 (1994) 1692.

    Google Scholar 

  30. S. Watanabe, N. Nakayama and T. Ito, Appl. Phys. Lett. 59 (1991) 1458.

    Google Scholar 

  31. S. Watanabe and Y. Sugita, Appl. Phys. Lett. 66 (1995) 1797.

    Google Scholar 

  32. N. Hirashita, M. Kinoshita, I. Aikawa and T. Ajioka, Appl. Phys. Lett. 56 (1990) 451.

    Google Scholar 

  33. T. Takahagi, A. Ishitani, H. Kuroda, Y. Nagasawa, H. Ito and S. Wakao, J. Appl. Phys. 68 (1990) 2187.

    Google Scholar 

  34. D. Gräf, M. Grundner, R. Schultz and L. Mühlhoff, J. Appl. Phys. 68 (1990) 5155.

    Google Scholar 

  35. K. Usuda, H. Kanaya, K. Yamada, T. Sato, T. Sueyoshi and M. Iwatsuki, Appl. Phys. Lett. 64 (1994) 3240.

    Google Scholar 

  36. H. Ikeda, K. Hotta, T. Yamada, S. Zaima, H. Iwano and Y. Yasuda, J. Appl. Phys. 77 (1995) 5125.

    Google Scholar 

  37. K. Deng and W.H. Ko, Sensors and Actuators A35 (1992) 45.

    Google Scholar 

  38. B.K. Gupta, J. Chevallier and B. Bhushan, Trans. ASME, J. Tribol. 115 (1993) 392.

    Google Scholar 

  39. S. Venkatesan and B. Bhushan, Wear 171 (1994) 25.

    Google Scholar 

  40. E. Zanoria and S. Danyluk, Wear (1993) 162.

  41. E.S. Zanoria, S. Danyluk and M.J. McNallan, Tribol. Trans. 38 (1995) 721.

    Google Scholar 

  42. D.-S. Lim and S. Danyluk, J. Mater. Sci. 23 (1988) 2607.

    Google Scholar 

  43. S. Danyluk, S.-W. Lee and L.D. Dyer, Ceram. Bull. 69 (1990) 1712.

    Google Scholar 

  44. I.L. Singer, J. Vac. Sci. Technol. A 12 (1994) 2605.

    Google Scholar 

  45. Y. Zhang, F. Zhang and G. Chen, J. Appl. Phys. 76 (1994) 7805.

    Google Scholar 

  46. M. Elwenspoek, J. Electrochem. Soc. 1490 (1993) 2075.

    Google Scholar 

  47. H. Bender, S. Verhaverbeke, M. Caymax, O. Vatel and M.M. Heynes, J. Appl. Phys. 75 (1994) 1207.

    Google Scholar 

  48. R.E. Thomas, R.A. Rudder and R.J. Markunas, The Electrochem Soc. Proc., Vol. 91–8 (1991) 186.

    Google Scholar 

  49. S.T. Pantelides, Solid State Commun. 84 (1/2) (1992) 221.

    Google Scholar 

  50. M. Fanciulli and T.D. Moustakas, Phys. Rev. B 48 (1993) 14982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardos, M.N. Surface chemistry-controlled tribological behavior of silicon and diamond. Tribol Lett 2, 173–187 (1996). https://doi.org/10.1007/BF00160974

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00160974

Keywords

Navigation