Skip to main content
Log in

Structural Modification Study of Anthracyclinones: Synthesis and Biological Activity of Several Derivatives of η-Pyrromycinone

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

On the basis of the N–O–O triangular pharmacophore hypothesis postulated earlier in our laboratory, selected side chains with or without the nitrogen atom at the strategic position were incorporated to η-pyrromycinone, one of the anthracyclinones derived from the antibiotic cinerubins. Since none of the anthracyclinones (the aglycones of anthracyclines) were reported to have antineoplastic activity, the validity of the proposed hypothesis could be tested. Results indicated that a compound designed in this manner, 1,4-bis[2-(2,2-dimethyloxazolidin-3-yl)ethylamino]-l,4-didehydroxy-η-pyrromycinone (9c) possessed both in vitro and in vivo antineoplastic activity comparable to that of mitoxantrone. The structure–activity relationship of this class of compounds is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. H. Adamson. Daunomycin (NSC-82151) and adriamycin (NSC-123127): A hypothesis concerning antitumor activity and cardiotoxicity. Cancer Chemother. Rep. 58:293–294 (1974).

    Google Scholar 

  2. K. Y. Zee-Cheng and C. C. Cheng. Common receptor-complement feature among some antileukemia compounds. J. Pharm. Sci. 59:1630–1634 (1970).

    Google Scholar 

  3. C. C. Cheng and R. K. Y. Zee-Cheng. The N-O-O triangulation hypothesis—an assessment after one decade. Heterocycles 15:1275–1281 (1981).

    Google Scholar 

  4. M. J. Egorin, R. E. Clawson, J. L. Cohen, L. A. Ross, and N. R. Bachur. Cellular pharmacology of 7(R)-O-methylnogarol: A new anticancer agent. J. Pharmacol. Exp. Ther. 210:229–236 (1979).

    Google Scholar 

  5. P. F. Wiley, D. W. Elrod, D. J. Houser, and F. A. Richard. Structure-activity relationships of nogalamycin analogues. J. Med. Chem. 25:560–567 (1982).

    Google Scholar 

  6. W. J. Adams, J. P. McGovren, E. A. Dalm, J. E. Brewer, and J. D. Hosley. Pharmacokinetics and systemic bioavailability of menogaril, an anthracycline antitumor agent, in the mouse, dog and monkey. Cancer Res. 49:6328–6336 (1989).

    Google Scholar 

  7. R. K. Y. Zee-Cheng and C. C. Cheng. Antineoplastic agents. Structure-activity relationship study of bis(substituted aminoalkylamino)anthraquinones. J. Med. Chem. 21:291–294 (1978).

    Google Scholar 

  8. C. C. Cheng and R. K. Y. Zee-Cheng. The design, synthesis and development of a new class of potent antineoplastic anthraquinones. In G. P. Ellis and G. B. West (eds.), Progress in Medicinal Chemistry, Elsevier, B.V. Amsterdam, 1983, Vol. 20, pp. 83–118.

    Google Scholar 

  9. H. Brockmann and W. Lenk. Über actinomycetenfarbstoffe. VI. Pyrromycinone. Chem. Ber. 92:1880–1909 (1959).

    Google Scholar 

  10. K. Eckardt. Zur Identifizerung einer Reihe von Anthracyclinon-pigmenten aus Streptomyces galilaeus Stamm JA-3043 (Galirubine und Galirubinone). Chem. Ber. 100:2561–2568 (1967).

    Google Scholar 

  11. L. Ettlinger, E. Gäumann, R. Hütter, W. Keller-Schierlein, F. Kradolfer, L. Neipp, V. Prelog, P. Reusser, and H. Zähner. Stoffwechselprodukte von Actinomyceten. XVI. Cinerubine. Chem. Ber. 92:1867–1879 (1959).

    Google Scholar 

  12. W. Kersten, H. Kersten, and W. Szybalski. Physicochemical properties of complexes between deoxyribonucleic acid and antibiotics which affect ribonucleic acid synthesis (actinomycin, daunomycin, cinerubin, nogalamycin, chromomycin, mithramycin and olivomycin). Biochemistry 5:236–244 (1966).

    Google Scholar 

  13. R. K. Johnson, A. A. Ovejera, and A. Goldin. Activity of anthracyclines against an adriamycin(NSC-123127)-resistant strain subline of P388 leukemia with special emphasis on cinerubin A (NSC-18334). Cancer Treat. Rep. 60:99–102 (1976).

    Google Scholar 

  14. G. A. Morris, K. B. Mullah, and J. K. Sutherland. Some experiments with aminodihydroxyanthraquinones. Tetrahedron 42:3303–3309 (1986).

    Google Scholar 

  15. R. X. Chen and W. M. Shen. In vitro and in vivo antitumor activity of a new anthracycline antibiotic 87-9. J. Sichuan Physiol. Sci. 4:41–44 (1988).

    Google Scholar 

  16. Cancer Chemotherapy National Service Center. Protocols for screening chemical agents and natural products against animal tumors and other biological systems. Cancer Chemother. Rep. 25:1–66 (1962).

    Google Scholar 

  17. Z. H. Zhuang and R. X. Chen. Antitumor activity and acute toxicity of aclacinomycin B. Chinese J. Antibiot. 8:231–235 (1983).

    Google Scholar 

  18. R. Han, J. L. Wan, X. L. Dong, R. X. Chen, and Z. H. Zhuang. Antitumor activities of aclacinomycin B and its fluorescence spectrometry in sera of experimental animals. Chinese J. Antibiot. 8:236–240 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, DF., Xiong, H. & Cheng, CC. Structural Modification Study of Anthracyclinones: Synthesis and Biological Activity of Several Derivatives of η-Pyrromycinone. Pharm Res 9, 739–742 (1992). https://doi.org/10.1023/A:1015891102895

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015891102895

Navigation