Skip to main content
Log in

New Insights into the Pharmacokinetics and Metabolism of (R,S)-Ifosfamide in Cancer Patients Using a Population Pharmacokinetic-Metabolism Model

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To describe the pharmacokinetics of R- andS-Ifosfamide (IFF), and their respective 2 and 3 N-dechloroethylated (DCE)metabolites (R2-, R3-, S2, S3-DCE-IFF) in cancer patients.

Methods. (R,S)-IFF was administered (1.5 g/m2)daily for 5 days in 13 cancer patients. Plasma and urine samples were collectedand analyzed using an enantioselective GC-MS method. An average of 97observations per patient were simultaneously fitted using apharmacokinetic-metabolism (PK-MB) model. A population PK analysis was performedusing an iterative 2-stage method (IT2S).

Results. Auto-induction of IFF metabolism was observed over the 5day period. Increases were seen in IFF clearance (R: 4 vs 7 L/h; S: 5vs 10 L/h), and in the formation of DCE (R: 7 vs 9%; S: 14 vs 19%)and active metabolites (4-OHM-IFF; R: 71 vs 77%; S: 67 vs 71%). Anovel finding of this analysis was that the renal excretion of the DCEmetabolites was also induced.

Conclusions. This population PK-MB model for (R,S)-IFF may beuseful in the optimization of patient care, and gives new insight intothe metabolism of (R,S)-IFF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. P. Granvil, J. Ducharme, B.-Leyland Jones, M. Trudeau, and I. W. Wainer. Stereoselective pharmacokinetics of ifosfamide and its 2-and 3-N-dechloroethylated metabolites in female cancer patients. Cancer Chemother. Pharmacol. 37:451–456 (1996).

    Google Scholar 

  2. C. P. Granvil, A. Madan, M. Sharkawi, A. Parkinson, and I. W. Wainer. Role of CYP2B6 and CYP3A4 in the in vitro N-Dechloroethylation of R-and S-Ifosfamide in human liver. Drug Metab. Dispos. 27:533–541 (1999).

    Google Scholar 

  3. C. P. Granvil, B. Gehrcke, W. A. König, and I. W. Wainer. Determination of the enantiomers of ifosfamide and its 2-and 3-N-dechloroethylated metabolites in plasma and urine using enantio-selective gas chromatography with mass spectrometric detection. J. Chromatogr. 622:21–31 (1993).

    Google Scholar 

  4. M. Gibaldi and D. Perrier. Pharmacokinetics,2nd ed. Marcel Dekker Inc., New York, 1982.

    Google Scholar 

  5. P. Roy, O. Tretyakov, J. Wright, and D. J. Waxman. Stereoselective metabolism of ifosfamide by human P-450s 3A4 and 2B6. Favorable metabolic properties of R-enantiomer. Drug Metab. Dispos. Nov; 27:1309–1318 (1999).

    Google Scholar 

  6. D. Z. D'Argenio and A. Schumitzky. ADAPT-II user's guide. Biomedical Simulations Resource. University of Southern California, Los Angeles, CA: 1995.

    Google Scholar 

  7. D. Collins and A. Forrest. IT2S user's guide. State University of New York at Buffalo, Buffalo, NY: 1995.

    Google Scholar 

  8. V. Boddy, M. Cole, A. D. J. Pearson, and J. R. Idle. The kinetics of the auto-induction of ifosfamide metabolism during continuous infusion. Cancer Chemother. Pharmacol. 36:53–60 (1995).

    Google Scholar 

  9. L. Gervot, B. Rochat, J. C. Gautier, F. Bohnenstengel, H. Kroemer, V. de Berardinis, H. Martin, P. Beaune, and I. de Waziers. Human CYP2B6: expression, inducibility and catalytic activities. Pharmacogenetics. 9:295–306 (1999).

    Google Scholar 

  10. M. Eichelbaum, T. Tomson, G. Tybring, and L. Bertilsson. Carbamazepine metabolism in man. Induction and pharmacogenetic aspects. Clin. Pharmacokinet. 10:80–90 (1985).

    Google Scholar 

  11. I. W. Wainer, J. Ducharme, C. P. Granvil, M. Trudeau, and B. Leyland Jones. Ifosfamide stereoselective dechloroethylation and neurotoxicity. Lancet. 343:982–983 (1994).

    Google Scholar 

  12. P. B. Farmer. Enantiomers of cyclophosphamide and iphosphamide. Biochem. Pharmacol. 37:145–148 (1988).

    Google Scholar 

  13. E. G. C. Brain, L. J. Yu, K. Gustafsson, P. Drewes, and D. J. Waxman. Modulation of P450-dependent ifosfamide pharmacokinetics: a better understanding of drug activation in vivo. Br. J. Cancer. 77:1768–1776 (1998).

    Google Scholar 

  14. L. Shargel and A. Yu. Applied Biopharmaceutics and Pharmacokinetics; 4th ed. Appleton and Lange, Stanford, Connecticut, 1999, pp. 231–232.

    Google Scholar 

  15. I. W. Wainer, J. Ducharme, and C. P. Granvil. The N-dechloroethylation of ifosfamide: using stereochemistry to obtain an accurate picture of a clinically relevant metabolic pathway. Cancer Chemother. Pharmaco. 37:332–6 (1996).

    Google Scholar 

  16. R. F. Struck, D. M. McCain, S. W. Tendian, and K. H. Tillery. Quantification of 4-hydroxyifosfamide in plasma of ifosfamide treated mice. Cancer Chemother. Pharmacol. 40:57–59 (1997).

    Google Scholar 

  17. M. D'Incalci G. Bolis, T. Facchinetti, C. Mangioni, L. Morasca, P. Morazzoni, and M. Salmona. Decreased half-life of cyclophosphamide in patients under continual treatment. Eur. J. Cancer. 13:7–10 (1979).

    Google Scholar 

  18. T. B. Kudriakova, L. A. Sirota, G. I. Rozova, and V. A. Gorkov. Autoinduction and steady-state pharmacokinetics of carbamazepine and its major metabolites. Br. J. Clin. Pharmacol. 33:611–615 (1992).

    Google Scholar 

  19. O. Fardel, V. Lecureur, and A. Guillouzo, The P-glycoprotein multidrug transporter. Gen. Pharmacol. 27:1283–1291 (1996).

    Google Scholar 

  20. D. M. Bradshaw and R. J. Arceci. Clinical relevance of transmembrane drug efflux as a mechanism of multidrug resistance. J.Clin Oncol. 16:3674–3690 (1998).

    Google Scholar 

  21. G. P. Kaijser, J. H. Beijnen, A. Bult, and W. J. M. Underberg. Ifosfamide Metabolism and Pharmacokinetics. Anticancer Res. 14:517–532 (1994).

    Google Scholar 

  22. L. M. Allen, P.J. Creaven. Pharmacokinetics of Ifosfamide. Clin. Pharmacol. Ther. 17:492–498 (1975).

    Google Scholar 

  23. M. P. Ducharme, M. L. Bernstein, C. P. Granvil, B. Gehrcke, and I. W. Wainer. Phenytoin-induced alteration in the N-dechloroethylation of ifosfamide stereoisomers. Cancer Chemother Pharmacol. 40:531–533 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Marco, M.P., Wainer, I.W., Granvil, C.L. et al. New Insights into the Pharmacokinetics and Metabolism of (R,S)-Ifosfamide in Cancer Patients Using a Population Pharmacokinetic-Metabolism Model. Pharm Res 17, 645–652 (2000). https://doi.org/10.1023/A:1007561727948

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007561727948

Navigation