Skip to main content
Log in

Fundamental Relationships Between the Composition of Pluronic Block Copolymers and Their Hypersensitization Effect in MDR Cancer Cells

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Previous studies have demonstrated that Pluronic block copolymers hypersensitize multiple drug resistant (MDR) cancer cells, drastically increasing the cytotoxic effects of anthracyclines and other anticancer cytotoxics in these cells. This work evaluates the dose dependent effects of these polymers on (i) doxorubicin (Dox) cytotoxicity and (ii) cellular accumulation of P-glycoprotein probe, rhodamine 123 (R123) in MDR cancer cells.

Methods. Dox cytotoxicity and R123 accumulation studies are performed on monolayers of drug-sensitive (KB, MCF-7, Aux-Bl) and MDR (KBv, MCF-7/ADR, CHrC5) cells.

Results. Both tests reveal strong effects of Pluronic copolymers observed at concentrations below the critical micelle concentration (CMC) and suggest that these effects are due to the copolymer single chains ('unimers'). Using block copolymers with various lengths of hydrophobic propylene oxide (PO) and hydrophilic ethylene oxide (EO) segments these studies suggest that the potency of Pluronic unimers in MDR cells increases with elevation of the hydrophobicity of their molecule. Optimization of Pluronic composition in R123 accumulation and Dox cytotoxicity studies reveals that Pluronic copolymers with intermediate lengths of PO chains and relatively short EO segments have the highest net efficacy in MDR cells.

Conclusions. The relationship between the structure of Pluronic block copolymers and their biological response modifying effects in MDR cells is useful for determining formulations with maximal efficacy with respect to MDR tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Langer. Drug delivery and targeting. Nature 392:5-10 (1998).

    Google Scholar 

  2. S. Cammas, and K. Kataoka. Site specific drug-carriers: polymeric micelles as high potential vehicles for biologically active molecules. In Solvents and Self-Organization of Polymers. S. E. Webber (ed.) Kluwer Academic-Publishers. Netherlands. p. 83-113 (1996).

    Google Scholar 

  3. V. Yu. Alakhov, and A. V. Kabanov. Block copolymeric biotransport carriers as versatile vehicles for drug delivery. Expert Op. Invest. Drugs 7:1453-1473 (1998).

    Google Scholar 

  4. A. V. Kabanov, V. P. Chekhonin, V. Yu. Alakhov, E. V. Batrakova, A. S. Lebedev, N. S. Melik-Nubarov, S. A. Arzhakov, A. V. Levashov, G. V. Morozov, E. S. Severin, and V. A. Kabanov. The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles. Micelles as microcontainers for drug targeting. FEBS Lett. 258:343-345 (1989).

    Google Scholar 

  5. V. Yu. Alakhov, E. Y. Moskaleva, E. V. Batrakova, and A. V. Kabanov. Hypersensitization of multidrug resistant human ovarian carcinoma cells by Pluronic P85 block copolymer. Bioconjugate Chem. 7:209-216 (1996).

    Google Scholar 

  6. A. Venne, S. Li, R. Mandeville, A. Kabanov, and Alakhov. V Hypersensitizing effect of pluronic L61 on cytotoxic activity, transport and subcellular distribution of doxorubicin in multiple drug-resistant cells. Cancer Res. 56:3626-3629 (1996).

    Google Scholar 

  7. A. Krishan, C. M. Fitz, and I. Andritsch. Drug retention, efflux, and resistance in tumor cells. Cytometry 29:279-285 (1997).

    Google Scholar 

  8. H. W. Van Veen, and W. N. Konings, Multidrug transport from bacteria to man: similarities in structure and function. Semin. Cancer Biol. 8:183-191 (1997).

    Google Scholar 

  9. M. Ferrari, M. C., Fornasiero, and A. M. Isetta. MTT colorimetric assay for testing macrophage cytotoxic activity in vitro. J. Immunol. Methods 131:165-172 (1990).

    Google Scholar 

  10. D. A. Scudiero, R. H. Shoemaker, K. D. Paull, A. Monks, S. Tierney, T. H. Nofsiger, M. J. Currens, D. Seniff, and M. R. Boyd. Evaluation of soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 48:4827-4833 (1988).

    Google Scholar 

  11. A. V. Kabanov, I. R. Nazarova, I. V. Astafieva, E. V. Batrakova, V. Yu. Alakhov, A. A. Yaroslavov, and V. A. Kabanov. Micelle formation and solubilization of fluorescent probes in poly(oxyethylene-b-oxypropylene-b-oxyethylene) solutions. Macromolecules 28:2303-2314 (1995).

    Google Scholar 

  12. E. M. Jancis, R. Carbone, K. J. Loechner, and P. S. Dannies. Estradiol induction of rhodamine 123 efflux and multidrug resistance pump in rat pituitary tumor cells. Mol. Pharmacol. 43:51-56 (1993).

    Google Scholar 

  13. J. S. Lee, K. Paull, M. Alvarez, C. Hose, A. Monks, M. Grever, A. T. Fojo, and S. E. Bates. Rhodamine efflux patterns predict P-glycoprotein substrates in the National Cancer Institute drug screen. Mol. Pharmacol. 46:627-638 (1994).

    Google Scholar 

  14. D. W. Miller, E. V. Batrakova, T. O. Waltner, V. Yu. Alakhov, and A. V. Kabanov. Interactions of Pluronic block copolymers with brain microvessel endothelial cells: evidence of two potential pathways for drug absorption. Bioconjugate Chem. 8:649-657 (1997).

    Google Scholar 

  15. E. V. Batrakova, H-Y. Han, V. Yu. Alakhov, D. W. Miller, and A. V. Kabanov. Effect of Pluronic block copolymers on drug absorption in Caco-2 cell monolayers. Pharm. Res. 15:852-857 (1998).

    Google Scholar 

  16. E. V. Batrakova, H-Y. Han, D. W. Miller, and A. V. Kabanov. Effects of Pluronic P85 unimers and micelles on drug permeability in polarized BBMEC and Caco-2 cells. Pharm. Res. 15:1525-1532 (1998).

    Google Scholar 

  17. V. I. Slepnev, L. E. Kuznetsova, A. N. Gubin, E. V. Batrakova, V. Yu. Alakhov, and A. V. Kabanov. Micelles of poly(oxyethylene)-poly(oxypropylene) block copolymer (pluronic) as a tool for low-molecular compound delivery into a cell. Phosphorylation of intracellular proteins with micelle incorporated [γ-32P]ATP. Biochem. Internat. 26:587-595 (1992).

    Google Scholar 

  18. V. P. Torchilin, M. I. Papisov, A. A. Bogranov, V. S. Trubstskoy, and V. G. Omelyanenko. Molecular mechanisms of liposome and immunoliposome steric protection with polyethylene glycol: theoretical and experimental proofs of the role of polymer chain flxibility. in Stealth Liposomes, eds. D. Lasic, and F. Martin. (CRC Press, Boca Raton, London, Tokyo), pp. 51-62 (1995).

    Google Scholar 

  19. C. Delgado, G. E. Francis, and D. Fisher. The uses and properties of PEG-linked proteins. Crit. Rev. Ther. Drug Carrier Syst. 9:249-304 (1992).

    Google Scholar 

  20. P. N. Hurter, J. M. H. M. Scheutjens, and T. A. Hatton. Molecular modeling of micelle formation and solubilization in block copolymer micelles. 1. A self-consistent mean-field lattice theory. Macromolecules 26:5592-5601 (1993).

    Google Scholar 

  21. P. N. Hurter, J. M. H. M. Scheutjens, and T. A. Hatton. Molecular modeling of micelle formation and solubilization in block copolymer micelles. 2. Lattice theory for monomers with internal degrees of freedom. Macromolecule 26:5530-5040 (1993).

    Google Scholar 

  22. J. S. Coon, W. Knudson, K. Clodfelter, B. Lu, and R. S. Weinstein. Solutol HS 15, Nonionic polyoxyethylene esters of 12-hydroxystearic acid, reverses multidrug resistance. Cancer Res. 51:897-902 (1991).

    Google Scholar 

  23. D. M. Woodcock, M. E. Linsenmeyer, G. Chojnowski, A. B. Kriegler, V. Nink, L. K. Webster, and W. H. Sawyer. Reversal of multidrug resistance by surfactants. Eur. J. Cancer 66:62-68 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kabanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batrakova, E., Lee, S., Li, S. et al. Fundamental Relationships Between the Composition of Pluronic Block Copolymers and Their Hypersensitization Effect in MDR Cancer Cells. Pharm Res 16, 1373–1379 (1999). https://doi.org/10.1023/A:1018942823676

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018942823676

Navigation