Skip to main content
Log in

Relationship Between Etomidate Plasma Concentration and EEG Effect in the Rat

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The effect-plasma concentration relationship of etomidate was studied in the rat using electroencephalographic changes as a pharmacodynamic parameter.

Methods. Etomidate was infused (50 mg/kg/h) in chronically instrumented rats (n = 6) until isoelectric periods of 5 s or longer were observed in the electroencephalogram (EEG). The EEG was continuously recorded during the experiment and frequent arterial blood samples were taken for determination of etomidate plasma concentrations. The changes observed in the raw EEG signal were quantified using aperiodic analysis in the 2.5−7.5 Hz frequency band. The return of the righting reflex was used as another parameter of anesthesia.

Results. A mean dose of 8.58 ± 0.41 mg/kg needed to be infused to reach the end point of 5 s isoelectric EEG. The plasma concentration time profiles were most adequately fitted using a three-exponential model. Systemic clearance, volume of distribution at steady-state and elimination half-life averaged 93 ± 6 ml/min/kg, 4.03 ± 0.24 l/kg and 59.4 ± 10.7 min respectively. The EEG effect-plasma concentration relationship was biphasic exhibiting profound hysteresis. Semi-parametric minimization of this hysteresis revealed an equilibration half-life of 2.65 ± 0.15 min, and the biphasic effect-concentration relationship was characterized nonparametrically by descriptors. The effect-site concentration at the return of the righting reflex was 0.44 ± 0.03 μg/ml.

Conclusions. The results of the present study show that the concentration-effect relationship of etomidate can be characterized in individual rats using aperiodic analysis in the 2.5−7.5 Hz frequency band of the EEG. This characterization can be very useful for studying the influence of diseases on the pharmacodynamics of etomidate in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. J. Ebert, M. M. Muzi, R. Berens, D. Goff, and J. P. Kampine. Sympathetic responses to induction of anesthesia in humans with propofol or etomidate. Anesthesiology 76:725–733 (1992).

    Google Scholar 

  2. M. P. Colvin, T. M. Savege, P. E. Newland, E. J. Weaver, A. F. Waters, J. M. Brookes, and R. Inniss. Cardiorespiratory changes following induction of anaesthesia with etomidate in patients with cardiac disease. Br. J. Anaesth. 51:551–556 (1979).

    Google Scholar 

  3. B. Simon and G. P. Young. Emergency airway management. Acad. Emerg. Med. 1:154–157 (1994).

    Google Scholar 

  4. J. W. Mandema and M. Danhof. Pharmacokinetic-pharmacodynamic modeling of the central nervous system effects of heptabarbital using aperiodic EEG analysis. J. Pharmacokin. Biopharm. 18:459–481 (1990).

    Google Scholar 

  5. F. W. Ossenberg, M. Peignoux, D. Bourdiau, and J. P. Benhamou. Pentobarbital pharmacokinetics in the normal and in the hepatectomized rat. J. Pharmacol. Exp. Ther. 194:111–116 (1975).

    Google Scholar 

  6. P. Le Moing and J. C. Levron. High-performance liquid chromatographic determination of etomidate in plasma. J. Chromatogr. 529:217–222 (1990).

    Google Scholar 

  7. F. M. Belpaire and M. G. Bogaert. Binding of diltiazem to albumin, α1-acid glycoprotein and to serum in man. J. Clin. Pharmacol. 30:311–317 (1990).

    Google Scholar 

  8. H. Akaike. A new look at the statistical model identification. IEEE Trans. Automat. Control AC 19:716–723 (1974).

    Google Scholar 

  9. M. Gibaldi and D. Perrier. Pharmacokinetics, Marcel Dekker, New York, 1982.

    Google Scholar 

  10. T. K. Gregory and D. C. Pettus. An electroencephalographic processing algorithm specifically intended for analysis of cerebral electrical activity. J. Clin. Monit. 2:190–197 (1986).

    Google Scholar 

  11. D. Verotta and L. B. Sheiner. Simultaneous modeling of pharmacokinetics and pharmacodynamics: An improved algorithm. CAB-IOS 3:345–349 (1987).

    Google Scholar 

  12. W. F. Ebling, M. Danhof, and D. R. Stanski. Pharmacodynamic characterization of the electroencephalographic effects of thiopental in rats. J. Pharmacokin. Biopharm. 19:123–143 (1991).

    Google Scholar 

  13. D. J. De Wildt, F. C. Hillen, A. G. Rauws, and B. Sangster. Etomidate-anaesthesia, with and without fentanyl, compared with urethane-anaesthesia in the rat. Br. J. Pharmacol. 79:461–469 (1983).

    Google Scholar 

  14. J. M. Gooding and G. Corssen. Effect of etomidate on the cardiovascular system. Anesth. Analg. 56:717–719 (1977).

    Google Scholar 

  15. J. Schüttler, H. Schwilden, and H. Stoeckel. Infusion strategies to investigate the pharmacokinetics and pharmacodynamics of hypnotic drugs: Etomidate as an example. Eur. J. Anaesth. 2:133–142 (1985).

    Google Scholar 

  16. K. Fruergaard, M. Jenstrup, J. Schierbeck, and F. Wiberg-Jorgensen. Total intravenous anaesthesia with propofol or etomidate. Eur. J. Anaesth. 8:385–391 (1991).

    Google Scholar 

  17. L. L. Gustafsson, W. F. Ebling, E. Osaki, and D. R. Stanski. Quantitation of depth of thiopental anesthesia in the rat. Anesthesiology 84:415–427 (1996).

    Google Scholar 

  18. A. Wauquier, W. A. E. Van Den Broeck, J. L. Verheyen, and P. A. J. Janssen. Electroencephalographic study of the short-acting hypnotics etomidate and methohexital in dogs. Eur. J. Anaesth. 47:367–377 (1978).

    Google Scholar 

  19. M. M. Ghoneim and T. Yamada. Etomidate: A clinical and electroencephalographic comparison with thiopental. Anesth. Analg. 56:479–485 (1977).

    Google Scholar 

  20. A. Doenicke, B. Löffler, J. Kugler, H. Suttmann, and B. Grote. Plasma concentration and EEG after various regimens of etomidate. Br. J. Anaesth. 54:393–400 (1982).

    Google Scholar 

  21. J. R. Arden, F. O. Holley, and D. R. Stanski. Increased sensitivity to etomidate in the elderly: Initial distribution versus altered brain response. Anesthesiology 65:19–27 (1986).

    Google Scholar 

  22. S. Dutta, Y. Matsumoto, N. U. Gothgen, and W. F. Ebling. Concentration-EEG effect relationship of propofol in rats. J. Pharm. Sci. 86:37–43 (1997).

    Google Scholar 

  23. S. Dutta and W. F. Ebling. Formulation-dependent pharmacokinetics and pharmacodynamics of propofol in rats. J. Pharm. Pharmacol. 50:37–42 (1998).

    Google Scholar 

  24. E. H. Cox, C. A. J. Knibbe, V. S. Koster, M. W. E. Langemeijer, E. E. Tukker, R. Lange, P. F. M. Kuks, H. J. M. Langemeijer, L. Lie-A-Huen, and M. Danhof. Influence of different fat emulsion-based intravenous formulations on the pharmacokinetics and pharmacodynamics of propofol. Pharm. Res. 15:442–448 (1998).

    Google Scholar 

  25. A. G. De Boer and D. D. Breimer. Rectal, oral and I.A. administration of etomidate to rats: Significant avoidance of hepatic first-pass elimination following rectal administration. Arch. Int. Pharmacodyn. Ther. 270:180–191 (1984).

    Google Scholar 

  26. M. S. Yates, C. R. Hiley, P. J. Roberts, D. J. Back, and F. E. Crawford. Differential effects of hepatic microsomal enzyme inducing agents on liver blood flow. Biochem. Pharmacol. 27:2617–2621 (1978).

    Google Scholar 

  27. P. J. Lewi, J. J. P. Heykants, and P. A. J. Janssen. Intravenous pharmacokinetic profile in rats of etomidate, a short-acting hypnotic drug. Arch. Int. Pharmacodyn. Ther. 220:72–85 (1976).

    Google Scholar 

  28. W. E. G. Meuldermans and J. J. P. Heykants. The plasma protein binding and distribution of etomidate in dog, rat and human blood. Arch. Int. Pharmacodyn. Ther. 221:150–162 (1976).

    Google Scholar 

  29. J. W. Mandema, P. Veng-Pedersen, and M. Danhof. Estimation of amobarbital plasma-effect site equilibration kinetics. Relevance of polyexponential conductance functions. J. Pharmacokin. Biopharm. 19:617–634 (1991).

    Google Scholar 

  30. J. J. P. Heykants, W. E. G. Meuldermans, L. J. M. Michiels, P. J. Lewi, and P. A. J. Janssen. Distribution, metabolism and excretion of etomidate, a short-acting hypnotic drug, in the rat. Comparative study of R-(+) and S-(−)-etomidate. Arch. Int. Pharmacodyn. Ther. 216:113–129 (1975).

    Google Scholar 

  31. H. Schwilden, J. Schüttler, and H. Stoeckel. Quantitation of the EEG and pharmacodynamic modelling of hypnotic drugs: Etomidate as an example. Eur. J. Anaesth. 2:121–131 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter De Paepe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Paepe, P., Van Hoey, G., Belpaire, F.M. et al. Relationship Between Etomidate Plasma Concentration and EEG Effect in the Rat. Pharm Res 16, 924–929 (1999). https://doi.org/10.1023/A:1018894523734

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018894523734

Navigation