Skip to main content
Log in

Isolation, Characterization, and Stability of Positional Isomers of Mono-PEGylated Salmon Calcitonins

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To separate and characterize the different positional isomers of mono-PEGylated salmon calcitonins (mono-PEG-sCTs) and to evaluate the effects of the PEGylation site on the stability of different mono-PEG-sCTs in rat kidney homogenate.

Methods. Mono-PEG-sCTs were prepared using succinimidyl carbonate monomethoxy polyethylene glycol (5,000 Da) and separated by gel-filtration HPLC followed by reversed-phase HPLC. To characterize PEGylated sCTs, matrix-assisted laser desorption ionization time of flight mass spectrometry (M ALDI-TOF MS) and reversed-phase HPLC of the trypsin digested samples were performed. Mono-PEG-sCTs and sCT in rat kidney homogenates were measured by column-switching reversed-phase HPLC with on-line detection of the radioiodinated samples using a flow-through radioisotope detector.

Results. Three different mono-PEGylated sCTs were separated by reversed-phase gradient HPLC. From the MALDI-TOF MS analysis, the average molecular weight of mono-PEG-sCTs was confirmed as around 8650 Da. The presence of PEG moiety in the mono-PEG-sCTs was also manifested by the fact that the distance between two adjacent mass spectum lines was 44 Da which corresponds to PEG monomer unit. Tryptic digestion analysis demonstrated that these mono-PEG-sCTs are 3 positional isomers of N-terminus, Lys18- and Lys11-residue modified mono-PEGylated sCTs. The degradation half-life of these 3 positional isomers in rat kidney homogenates significantly increased in order of the N-terminus (125.5 min), Lys11- (157.3 min), and Lysl8-residue modified mono-PEGylated sCT (281.5 min) over the native sCT (4.8 min).

Conclusions. Three positional isomers of mono-PEGylated sCTs were purified and characterized. Of these, the resistance to proteolytic degradation was highest for the Lysl8-residue modified mono-PEG-sCT. These studies demonstrate that the in vivo stability of PEGylated sCTs is highly dependent on the site of PEG molecule attachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Azria. The Calcitonins. Physiology and Pharmacology, Karger, Basel, 1989.

    Google Scholar 

  2. K. C. Lee, E. E. Soltis, P. S. Newman, K. W. Burton, R. C. Mehta, and P. P. DeLuca. In vivo assessment of salmon calcitonin sustained release from biodegradable micropsheres. J. Contr. Rel. 17:199–206 (1991).

    Google Scholar 

  3. E. Compston. Prevention and management of osteoporosis. Current trends and future prospects. Drugs 53:727–35 (1997).

    Google Scholar 

  4. G. Segra and P. Dal Pra. Calcitonin pharmacokinetics. In A. Pecile (ed.), Calcitonin, Excerpta Medica, Amsterdam, 1985, pp. 99–107.

    Google Scholar 

  5. K. C. Lee, Y. J. Lee, H. M. Song, C. J. Chun, and P. P. DeLuca. Degradation of synthetic salmon calcitonin in aqueous solution. Pharm. Res 9:1521–1523 (1992).

    Google Scholar 

  6. H. S. Lee, J. S. Lee, H. Lee, Y. S. Jung, P. P. DeLuca, and K. C. Lee. Reversed-phase high-performance liquid chromatography of salmon calcitonin and its degradation products in biological sample using column switching and flow-through radioisotope detection. J. Chromatogr. B. 673:136–141 (1995).

    Google Scholar 

  7. J. Hysing, J. O. Gordeladze, G. Christensen, and H. Tolleshaug. Renal uptake and degradation of trapped-label calcitonin. Biochem. Pharmacol. 41:1119–1126 (1991).

    Google Scholar 

  8. R. E. Simmons, J. T. Hjelle, C. A. Mahoney, L. J. Deftos, W. Lisker, P. Kato, and R. Rabkin. Renal metabolism of calcitonin. Am. J. Physiol. 254:F593–F600 (1988).

    Google Scholar 

  9. S. R. Lang, W. Staudenmann, P. James, H. Manz, R. Kessler, B. Galli, H. Moser, A. Rummelt, and H. P. Merkle. Proteolysis of human calcitonin in excised bovine nasal mucosa: Elucidation of the metabolic pathway by liquid secondary ionization mass spectrometry (LSIMS) and matrix assisted laser desorption ionization mass spectrometry (MALDI). Pharm. Res. 13:1679–1685 (1996).

    Google Scholar 

  10. V. Windisch, F. DeLuccia, L. Duhau, F. Herman, J. J. Mencel, S. Tang, and M. Vuilhorgne. Degradation pathways of salmon calcitonin in aqueous solution. J. Pharm. Sci. 86:359–364 (1997).

    Google Scholar 

  11. G. E. Francis, C. Delgado, and D. Fisher. PEG-modified proteins. In T. J. Ahern and M. C. Manning (eds.), Stability of Protein Pharmaceuticals, Part B: In vivo pathways of degradation andstrategies for protein stabilization. Plenum Press, New York, 1992, pp. 235–263.

    Google Scholar 

  12. N. V. Katre. The conjugation of proteins with polyethylene glycol and other polymers (Altering properties of proteins to enhance their therapeutic potential). Adv. Drug Del. Rev. 10:91–114 (1993).

    Google Scholar 

  13. Y. Inada, A. Matsushima, M. Hiroto, H. Nishimura, and Y. Kodera. Modification of proteins with polyethylene glycol derivatives. Methods Enzymol. 242:65–90 (1994).

    Google Scholar 

  14. S. Zalipsky. Chemistry of polyethylene glycol conjugates with biologically active molecules. Adv. Drug Del. Rev. 16:157–182 (1995).

    Google Scholar 

  15. F. M. Veronese, C. Monfardini, P. Caliceti, O. Schiavon, M. D. Scrawen, and D. Beer. Improvement of pharmacokinetic, immunological and stability properties of asparaginase by conjugation to linear and branched monomethoxy poly(ethylene glycol). J. Contr. Rel. 40:199–209 (1996).

    Google Scholar 

  16. Y. Tsutsumi, S. Tsunoda, H. Kamada, T. Kihira, S. Nakagawa, Y. Kaneda, T. Kanamori, and T. Mayumi. Molecular design of hybrid tumor necrosis factor-α II: the molecular size of polyethylene glycol-modified tumor necrosis factor-α affects its antitumor potency. Brt. J. Cancer 74:1090–1095 (1996).

    Google Scholar 

  17. P. McGoff, A. C. Baziotis, and R. Maskiewicz. Analysis of polyethylene glycol modified superoxide dismutase by chromatographic, electrophoretic, light scattering, chemical and enzymatic methods. Chem. Pharm. Bull. 36:3079–3091 (1988).

    Google Scholar 

  18. M. Kunitani, G. Dollinger, D. Johnson, and L. Kresin. On-line characterization of polyethylene glycol-modified proteins. J. Chromatogr. 588:125–137 (1991).

    Google Scholar 

  19. J. Snider, C. Neville, L. Yuan, and J. Bullock. Characterization of the heterogenicity of polyethylene glycol-modified superoxide dismutase by chromatographic and electrophoretic techniques. J. Chromatogr. 599:141–155 (1992).

    Google Scholar 

  20. D. H. Na, B. H. Woo, and K. C. Lee. Quantitative analysis of derivatized proteins prepared with pyridyl disulfide-containing cross-linkers by HPLC. Bioconj. Chem. 10: in press

  21. R. J. Goodson and N. V. Katre. Site-directed PEGylation of recombinant interleukin-2 at its glycosylation site. Biotechnology 8:343–346 (1990).

    Google Scholar 

  22. H. F. Gaertner and R. E. Offord. Site-specific attachment of functionalized poly(ethylene glycol) to the amino terminus of proteins. Bioconj. Chem. 7:38–44 (1996).

    Google Scholar 

  23. O. B. Kinstler, D. N. Brems, S. L. Lauren, A. G. Paige, J. B. Hamburger, and M. J. Treuheit. Characterization and stability of N-terminally PEGylated rhG-CSF. Pharm. Res. 13:996–1002 (1995).

    Google Scholar 

  24. A. M. Felix, Y. Lu, and R. M. Campbell. Pegylated peptides IV. Enhanced biological activity of site-directed pegylated GRF analogs. Int. J. Peptide Protein Res. 46:253–264 (1995).

    Google Scholar 

  25. S. P. Monkarch, Y. Ma, A. Aglione, P. Bailon, D. Ciolek, B. DeBarbieri, M. C. Graves, K. Hollfelder, H. Michel, A. Palleroni, J. E. Porter, E. Russonman, S. Roy, and Y. E. Pan. Positional isomers of monopegylated interferon α-2a: Isolation, characterization, and biological activity. Anal. Biochem. 247:434–440 (1997).

    Google Scholar 

  26. K. C. Lee, K. K. Tak, M. O. Park, J. T. Lee, B. H. Woo, S. D. Yoo, H. S. Lee, and P. P. DeLuca. Preparation and characterization of polyethylene glycol-modified salmon calcitonins. Pharm. Dev. Tech. 4:269–275(1999).

    Google Scholar 

  27. K. C. Lee, T. S. Kang, B. H. Woo, J. T. Lee, H. S. Lee, and P. P. DeLuca. Reversed-phase high-performance liquid chromatography of radioiodinated salmon calcitonins. J. Chromatogr. B. 694:31–37 (1997).

    Google Scholar 

  28. J. Kajihara, K. Shibata, Y. Nakano, S. Nishimuro, and K. Kato. Physicochemical characterization of PEG-PPG conjugated human urokinase. Biochim. Biophys. Acta 1199:202–208 (1994).

    Google Scholar 

  29. R. Clark, K. Olson, G. Fuh, M. Marian, D. Mortensen, G. Teshima, S. Chang, H. Chu, V. Mukku, E. Canova-Davis, T. Somers, M. Cronin, M. Winkler, and J. A. Wells. Long-acting growth hormones produced by conjugation with polyethylene glycol. J. Biol. Chem. 271:21969–21977 (1996).

    Google Scholar 

  30. K. C. Lee, J. T. Lee, B. H. Woo, S. C. Moon, and P. P. DeLuca. Analysis of PEGylated salmon calcitonins by radioimmunoassay and HPLC with flow through radioisotope detection. Pharm. Res. 14:S350–351 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Choon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K.C., Moon, S.C., Park, M.O. et al. Isolation, Characterization, and Stability of Positional Isomers of Mono-PEGylated Salmon Calcitonins. Pharm Res 16, 813–818 (1999). https://doi.org/10.1023/A:1018861616465

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018861616465

Navigation