Skip to main content
Log in

Human Intestinal Permeability of Piroxicam, Propranolol, Phenylalanine, and PEG 400 Determined by Jejunal Perfusion

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To determine the human jejunal permeabilities of compounds utilizing different transport mechanisms using a regional perfusion approach and to establish a standard procedure for determining drug permeability class to be used for the establishment of drug product bioequivalence standards.

Methods. Six healthy male volunteers participated in this study. A multi-lumen perfusion tube was inserted orally and positioned in the proximal region of the jejunum. A solution containing piroxicam, phenylalanine, propranolol, PEG 400 and PEG 4000 was perfused through the intestinal segment at a rate of 3.0 ml/min. Perfusate samples were quantitatively collected every 10 minutes for two 100 minute periods with an intermediate wash out period to determine intra and intersubject variation.

Results. The mean Peff (±SD) of piroxicam, phenylalanine, propranolol, and PEG 400 were 10.40 ± 5.93, 6.67 ± 3.42, 3.59 ± 1.60, 0.80 ± 0.46 × 10−4 cm/sec, respectively. The coefficient of variation for the intersubject variability, first and second perfusion periods were: piroxicam, 60.5% and 57.1%; phenylalanine, 52.8% and 57.8%: propranolol, 62.1 % and 44.6%; and PEG 400, 81.7% and 42.3%, indicating a slightly lower CV for the second perfusion period in the same subject. The intrasubject CV's between the two perfusion periods were: 19.4%, 21.3%, 23.6% and 41.0% respectively, indicating a smaller intraindividual variation for all compounds studied.

Conclusions. Piroxicam, a nonpolar drug exhibited the highest permeability of the compounds studied. The intrasubject CV was lower than the intersubject CV, indicating consistent permeability estimation within subjects. The methodology is useful for permeability estimation regardless of absorption mechanism and can be used to establish a consistent data base of human permeabilities for estimation of human drug absorption and for establishing the biopharmaceutic permeability class of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Z. Csaky. Intestinal permeation and permeability: an overview. In T. Z. Csaky (eds.), Pharmacology of Intestinal Permeation I, Springer-Verlag, New York, 51–59 (1984).

    Google Scholar 

  2. K. Ewe, R. Wanitschke, and M. Staritz. Intestinal permeability studies in humans. In T. Z. Csaky (eds.), Pharmacology of Intestinal Permeation II, Springer-Verlag, New York, 535–571 (1994).

    Google Scholar 

  3. H. Lennernäs, Ö. Ahrenstedt, and A. L. Ungell. Br. J. Clin. Pharmac. 37:589–596 (1994).

    Google Scholar 

  4. H. Lennernäs, Ö. Ahrenstedt, R. Hällgren, L. Knutson, M. Ryde, and L. K. Paalzow. Pharm. Res. 9:1243–1251 (1992).

    Google Scholar 

  5. R. Modigliani, J. C. Rambaud, and J. J. Bernier. Digestion 9:176–192 (1973).

    Google Scholar 

  6. D. C. Taylor, R. Pownall, and W. Burke. J. Pharm. Pharmacol. 37:280–283 (1985).

    Google Scholar 

  7. I. M. Menzies. Transmucosal passage of inert molecules in health and disease. In E. Skadhauge and K. Heintze (eds.), Intestinal Absorption and Secretion. MTP Press, Lancaster, 527–543 (1983).

    Google Scholar 

  8. B. G. Munck. Intestinal absorption of amino acids. In L. F. Johnson (eds.), Physiology of the Gastrointestinal Tract, Raven Press, New York, 1097–1122 (1981).

    Google Scholar 

  9. F. D. Boudinot and S. S. Ibrahim. J. Chromatogr. 430:424–428 (1988).

    Google Scholar 

  10. R. B. Gillilan, W. D. Mason, and C. J. Fu. J. Chromatogr. 487:232–235 (1989).

    Google Scholar 

  11. A. A. Al-Angary, Y. M. El-Sayed, M. A. Al-Meshal, M. M. Al-Dardiri and G. M. Mahrous. Journal of Clinical Pharmacy and Therapeutics 16:93–101 (1991).

    Google Scholar 

  12. N. D. Atherton and A. Green. Clin. Chem. 34:2241–2244 (1988).

    Google Scholar 

  13. C. Carducci, F. Moretti, M. Birarelli, and I. Antonozzi. J. Chromatogr. 553:149–154 (1991).

    Google Scholar 

  14. I. M. Kinahan and M. R. Smyth. J. Chromatogr. 565:297–307 (1991).

    Google Scholar 

  15. D. A. Johnson and G. L. Amidon. J. theor. Biol. 131:93–106 (1988).

    Google Scholar 

  16. P. J. Sinko, G. D. Leesman, and G. L. Amidon. Pharm. Res. 8:979–998 (1991).

    Google Scholar 

  17. G. L. Amidon, J. Kou, R. L. Elliott, and E. N. Lightfoot. J. Pharm. Sci. 69:1369–1373 (1980).

    Google Scholar 

  18. R. Murphy, A. C. Selden, M. Fisher, E. A. Fagan, and V. S. Chadwick. J. Chromatogr. 211:160–165 (1981).

    Google Scholar 

  19. P. Krugliak, D. Hollander, K. Le, T. Ma, V. D. Dadufalza, and K. D. Katz. Gut 31:417–421 (1990).

    Google Scholar 

  20. V. M. F. Choi, J. E. Coates, J. Chooi, A. B. R. Thomson, and A. S. Russell. Clin. Invest. Med. 18:357–361 (1995).

    Google Scholar 

  21. N. M. Idkaidek, G. L. Amidon, H. Lennernäs, and A. Hussain. Submitted (1997).

  22. B. E. Bleske, L. S. Welage, S. Rose, G. L. Amidon, and M. J. Shea. J. Clin. Pharmacol. 35:374 (1995).

    Google Scholar 

  23. G. L. Amidon, H. Lennernäs, V. P. Shah, and J. R. Crison. Pharm. Res. 12:413–420 (1995).

    Google Scholar 

  24. J. P. Skelly, G. A. Van Buskirk, H. M. Arbit, G. L. Amidon, L. Augsburger, W. H. Barr, S. Berge, J. Clevenger, S. Dighe, M. Fawzi, D. Fox, M. A. González, V. A. Gray, C. Hoilberg, L. J. Leeson, L. Lesko, H. Malinowski, P. R. Nixon, D. M. Pearce, G. Peck, S. Porter, J. Robinson, D. R. Savello, P. Schwaitz, J. B. Schwartz, V. P. Shah, R. Shangraw, F. Theeuwes, and T. Wheatley. Pharm. Res. 10:1800 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon L. Amidon.

Additional information

This manuscript represents the personal opinions of the author and does not necessarily represent the views or policies of the agency.

This manuscript represents the personal opinions of the author and does not necessarily represent the views or policies of the agency.

This manuscript represents the personal opinions of the author and does not necessarily represent the views or policies of the agency.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takamatsu, N., Welage, L.S., Idkaidek, N.M. et al. Human Intestinal Permeability of Piroxicam, Propranolol, Phenylalanine, and PEG 400 Determined by Jejunal Perfusion. Pharm Res 14, 1127–1132 (1997). https://doi.org/10.1023/A:1012134219095

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012134219095

Navigation