Skip to main content
Log in

Activation of the Mononuclear Phagocyte System by Poloxamine 908: Its Implications for Targeted Drug Delivery

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To investigate the effect of poloxamine 908 on the MPS activity and the importance of its mode of presentation to the immune system.

Methods. Solutions of endotoxin free poloxamine 908 were injected daily intravenously to rats, and the effect on the degree of sequestration by the liver of I125 labelled, poloxamine 908-coated 60 nm polystyrene particles was investigated by studying effect of dosing regimen(s) and assessment of opsonic activity.

Results. After 3 or 4 days repeated dosing with poloxamine 908 (0.7 mg) in solution, the poloxamine 908-coated polystyrene particles (60 nm) were rapidly cleared from the circulation. The increased sequestration of the particles by the liver lasted for more than 7 days after last dosing with the poloxamine 908 solution. In subsequent studies, it was found that a single dose of poloxamine 908 (0.7 mg) in solution was sufficient to activate the MPS 4 days after the injection. The increased uptake was found not be mediated by a serum component, nor was it due to proliferation of the Kupffer cells in the liver.

Conclusions. The results provide evidence that a solution of endotoxin-free poloxamine 908 activates the MPS so that 4 days after injection otherwise long-term circulating poloxamine 908-coated particles are sequestered by the liver. This finding has implications for use of such coated systems in therapeutic situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Illum, S. S. Davis, R. H. Müller, E. Mak and P. West. Life Sci. 40:367–374 (1987).

    Google Scholar 

  2. S. E. Dunn, A. Brindley, S. S. Davis, M. C. Davies, and L. Illum. Pharm. Res. 11:1016–1022 (1994).

    Google Scholar 

  3. S. M. Moghimi, C. J. H. Porter, I. S. Muir, L. Illum, and S. S. Davis. Biochem. Biophys. Res. Commun. 177:861–866 (1991).

    Google Scholar 

  4. S. M. Moghimi, H. Hedeman, I. S. Muir, L. Illum, and S. S. Davis. Biochim. Biophys. Acta 1157:233–240 (1993).

    Google Scholar 

  5. S. M. Moghimi, H. Hedeman, N. M. Christy, L. Illum, and S. S. Davis. J. Leukocyte Biol. 54:513–517 (1993).

    Google Scholar 

  6. H. Hedeman. A colloidal system for targeting of the spleen. MSc Thesis. The Royal Danish School of Pharmacy, Copenhagen, Denmark (1992).

    Google Scholar 

  7. N. B. Argent, J. Liles, D. Rodham, C. B. Clayton, R. Wilkinson, and P. H. Baylis. Laboratory Animals 28:172–175 (1994).

    Google Scholar 

  8. T. I. Armstrong, M. C. Davies, and L. Illum. J. Drug Targeting 4:389–398 (1997).

    Google Scholar 

  9. N. M. Christy, S. M. Moghimi, L. Illum, and S. S. Davis. Proc. Intern. Symp. Control. Rel. Bioact. Mater. 19:355–356 (1992).

    Google Scholar 

  10. R. Tarsi, F. Mulieri, F. Venturi, and N. Simonetti. J. Leukocyte Biol. 37:45–50 (1985).

    Google Scholar 

  11. T. M. Saba and Antilatzides. Br. J. Cancer 32:471–482 (1975).

    Google Scholar 

  12. E. R. Abril, C. Jolley, and D. L. Earnest. Gastroenterol. 106:A855 (1994).

    Google Scholar 

  13. R. M. J. Hoedemakers, P. J. M. Vossebeld, T. Daemen, and G. L. Scherphof. J. Immunother. 13:252–260 (1993).

    Google Scholar 

  14. M. J. Thomassen, D. P. Meeker, S. D. Deodhar, H. P. Wiedemann, and B. P. Barna. J. Immunother. 13:1–6 (1993).

    Google Scholar 

  15. L. S. Feder and D. L. Laskin. J. Leukocyte. Biol. 55:507–513 (1994).

    Google Scholar 

  16. P. S. Richards and T. M. Saba. Hepatology 5:32–37 (1985).

    Google Scholar 

  17. M. Shirahama, H. Ishibashi, Y. Tsuchiya, S. Kurokawa, K. Kurokawa, Y. Hayashida, and Y. Niho. Scand. J. Immunol. 28:719–725 (1988).

    Google Scholar 

  18. T. Yamaoka, Y. Tabata, and Y. Ikada. J. Pharm. Sci. 83:601–606 (1994).

    Google Scholar 

  19. T. P. Johnston, H. Beris, Z. G. Wout, and J. L. Kennedy. Int. J. Pharm. 100:279–284 (1993).

    Google Scholar 

  20. J. G. Raynes. Biochem. Soc. Trans. 22:69–74 (1994).

    Google Scholar 

  21. S. Thiel, U. Holmskov, L. Hvid, S. B. Laursen, and J. C. Jensenius. Clin. Exp. Immunol. 90:31–35 (1992).

    Google Scholar 

  22. S. Larrson, U. Thelander, and S. Friberg. Clin. Orthop. Relat. Res. 275:237–242 (1992).

    Google Scholar 

  23. Y. Aramaki, M. Murai, and S. Tsuchiya. Pharm. Res. 11:518–521 (1994).

    Google Scholar 

  24. S. M. Moghimi and S. S. Davis. CRC Crit. Rev. Ther. Drug Carrier System 11:31–59 (1994).

    Google Scholar 

  25. S. M. Moghimi, H. Hedeman, L. Illum, and S. S. Davis. Clin. Sci. 84:605–609 (1993).

    Google Scholar 

  26. A. A. Knowlton, C. M. Connelly, G. M. Romo, W. Mamuya, C. S. Apstein, and P. Brecher. J. Clin. Invest. 89:1060–1068 (1992).

    Google Scholar 

  27. T. Konzaki, Y. Saito, S. Yashimo, S. Murano, and N. Mariski. LANCA 339:1244 (1992).

    Google Scholar 

  28. T. Bainbridge and R. Fick. J. Lab. Clin. Med. 114:728–733 (1989).

    Google Scholar 

  29. V. Najjar and A. Constantopoulos. J. Reticuloendothel. Soc. 12:197–215 (1972).

    Google Scholar 

  30. J. Webb and K. Whaley. Aust. NZ J. Med. 16:268–278 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armstrong, T.I., Moghimi, S.M., Davis, S.S. et al. Activation of the Mononuclear Phagocyte System by Poloxamine 908: Its Implications for Targeted Drug Delivery. Pharm Res 14, 1629–1633 (1997). https://doi.org/10.1023/A:1012194721763

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012194721763

Navigation