Skip to main content
Log in

Microbial and Mammalian Metabolism Studies of the Semisynthetic Antimalarial, Anhydrodihydroartemisinin

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Microbial metabolism studies of the semisynthetic antimalarial anhydrodihydroartemisinin (1), have shown that it is metabolized by a number of microorganisms. Large scale fermentation with Streptomyces lavendulaeL-105 and Rhizopogonspecies (ATCC 36060) have resulted in the isolation of four microbial metabolites. These metabolites have been identified as a 14-carbon rearranged product (2), 9β-hydroxyanhydrodihydroartemisinin (3), 1 l-epi-deoxydihydro-artemisinin (4), and 3α-hydroxydeoxyanhydrodihydroartemisinin (5). Microbial metabolites were completely characterized by spectral methods, including 1H-NMR and 13C-NMR spectroscopy. The structure and stereochemistry of metabolite 2 were unequivocally established by X-ray crystallographic analysis. Thermospray mass spectroscopy/high-performance liquid chromatographic analyses of plasma from rats used in mammalian metabolism studies of 1 have shown microbial metabolite 3 to be the major mammalian metabolite. In vitroantimalarial testing has shown metabolite 3 to possess antimalarial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. L. Klayman. Qinghaosu (artemisinin): An antimalarial drug from China. Science, 288:1049–1055 (1985).

    Google Scholar 

  2. A. J. Lin, M. Lee, and D. L. Klayman. Antimalarial activity of new water-soluble dihydroartemisinin derivatives. 2. Stereospecificity of the ether side chain. J. Med Chem. 32:1249–1252 (1989).

    Google Scholar 

  3. F. S. El-Feraly, A. Ayalp, M. Al-Yahya, D. R. McPhail, and A T. McPhail. Conversion of artemisinin to artemisitene. J. Nat. Prod. 53:66–71 (1990).

    Google Scholar 

  4. C. D. Hufford, S. I. Khalifa, A. T. McPhail, F. S. El-Feraly, and M. S. Ahmad. Preparation and characterization of new C-11 oxygenated artemisinin derivatives. J. Nat. Prod. 56:62–66 (1993).

    Google Scholar 

  5. K. Kieslich, Microbial Transformations of Non-steroid Cyclic Compounds, Wiley-George Thieme, Stuttgart, (1976).

    Google Scholar 

  6. R. V. Smith, and J. P. Rosazza. Microbial systems for study of the biotransformation of drugs. Biotech. Bioeng. 17:785–814 (1975).

    Google Scholar 

  7. R. V. Smith, and J. P. Rosazza. Microbial models of mammalian metabolism. J. Pharm. Sci. 64:1737–1759 (1975).

    Google Scholar 

  8. J. P. Rosazza, and R. V. Smith. Microbial models for drug metabolism. Adv. Appl. Microbiol. 25:169–208 (1979).

    Google Scholar 

  9. R. V. Smith, and J. P. Rosazza, In J. P. Rosazza (ed.), Microbial Transformations of Bioactive Compounds, CRC Press, Boca Raton, FL, 1982, Vol. II, pp. 1–42.

    Google Scholar 

  10. A. M. Clark and C. D. Hufford. Microbial transformations of the sesquiterpene lactone costunolide. J. Chem. Soc. Perkin I, 3022–3028 (1979).

  11. A. M. Clark, J. D. McChesney, and C. D. Hufford. The use of microorganisms for the study of drug metabolism. Med. Res. Rev. 5:231–253 (1985).

    Google Scholar 

  12. A. M. Clark and C. D. Hufford. Use of microorganisms for the study of drug metabolism: An update. Med. Res. Rev. 11:473–501 (1991).

    Google Scholar 

  13. F. S. El-Feraly, and C. D. Hufford. Synthesis and carbon-13 nuclear magnetic resonance assignments of xenognosin. J. Org. Chem. 47:1527–1530 (1982).

    Google Scholar 

  14. S. A. ElMarakby, A. M. Clark, J. K. Baker, and C. D. Hufford. Microbial metabolism of bornaprine, 3-(diethylamino) propyl 2-phenylbicyclo [2.2.1] heptane-2-carboxylate. J. Pharm. Sci. 75:614–618 (1986).

    Google Scholar 

  15. C. D. Fortner, W. R. Grove, D. Bowie, and M. D. Walker. Fat emulsion vehicle for intravenous administration of an aqueous insoluble drug. Am. J. Hosp. Pharm. 32:582–584 (1975).

    Google Scholar 

  16. G. M. Sheldrick, SHELX76, a system of computer programs for X-ray structure determination as locally modified, University of Cambridge, England (1976).

    Google Scholar 

  17. G. M. Sheldrick, SHELXS, Acta Cryst. A46, 467 (1990).

    Google Scholar 

  18. C. D. Hufford, I.-S Lee, H. N. ElSohly, H. T. Chi, and J. K. Baker. Structure elucidation and thermospray hplc/ms of the microbial metabolites of the antimalarial arteether. Pharm. Res. 7:923–927 (1990).

    Google Scholar 

  19. I.-S. Lee, H. N. ElSohly, and C. D. Hufford. Microbial metabolism studies of the antimalarial drug arteether Pharm. Res. 7:199–203 (1990).

    Google Scholar 

  20. L. D. Gerpe, H. J. Yeh, Q,-S, Yu, A. Brossi, and J. L. Flippen-Anderson. C-(11)-epi-deoxyartether: Formation and structure. Heterocycles 27:897–901 (1988).

    Google Scholar 

  21. I.-S. Lee and C. D. Hufford. Metabolism of antimalarial sesquiterpene lactones. Pharmac. Ther. 48:345–355 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalifa, S.I., Baker, J.K., Rogers, R.D. et al. Microbial and Mammalian Metabolism Studies of the Semisynthetic Antimalarial, Anhydrodihydroartemisinin. Pharm Res 11, 990–994 (1994). https://doi.org/10.1023/A:1018979202933

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018979202933

Navigation