Skip to main content
Log in

Selective Microstimulation of Central Nervous System Neurons

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The goal of this study was to identify stimulus parameters and electrode geometries that were effective in selectively stimulating targeted neuronal populations within the central nervous system (CNS). Cable models of neurons that included an axon, initial segment, soma, and branching dendritic tree, with geometries and membrane dynamics derived from mammalian motoneurons, were used to study excitation with extracellular electrodes. The models reproduced a wide range of experimentally documented excitation patterns including current-distance and strength-duration relationships. Evaluation of different stimulus paradigms was performed using populations of fifty cells and fifty fibers of passage randomly positioned about an extracellular electrode(s). Monophasic cathodic or anodic stimuli enabled selective stimulation of fibers over cells or cells over fibers, respectively. However, when a symmetrical charge-balancing stimulus phase was incorporated, selectivity was greatly diminished. An anodic first, cathodic second asymmetrical biphasic stimulus enabled selective stimulation of fibers, while a cathodic first, anodic second asymmetrical biphasic stimulus enabled selective stimulation of cells. These novel waveforms provided enhanced selectivity while preserving charge balancing as is required to minimize the risk of electrode corrosion and tissue injury. Furthermore, the models developed in this study can predict the effectiveness of electrode geometries and stimulus parameters for selective activation of specific neuronal populations, and in turn represent useful tools for the design of electrodes and stimulus waveforms for use in CNS neural prosthetic devices. © 2000 Biomedical Engineering Society.

PAC00: 8717Nn, 8719La, 8719Nn, 8717Aa

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aitken, J. T., and J. E. Bridger. Neuron size and neuron population density in the lumbosacral region of the cat spinal cord. J. Anat.95:38-53, 1961.

    Google Scholar 

  2. Bagshaw, E. V., and M. H. Evans. Measurement of current spread from microelectrodes when stimulating within the nervous system. Exp. Brain Res.25:391-400, 1976.

    Google Scholar 

  3. Barbeau, H., D. A. McCrea, M. J. O'Donovan, S. Rossignol, W. M. Grill, and M. A. Lemay. Tapping into spinal circuits to restore motor function. Brain Res. Rev.30:27-51, 1999.

    Google Scholar 

  4. Barrett, E. F., J. N. Barrett, and W. E. Crill. Voltage-sensitive outward currents in cat motoneurones. J. Physiol. (London)304:251-276, 1980.

    Google Scholar 

  5. Barrett, J. N., and W. E. Crill. Specific membrane properties cat motoneurons. J. Physiol. (London)239:301-324, 1974.

    Google Scholar 

  6. Barrett, J. N., and W. E. Crill. Voltage-clamp of cat motoneurone somata: Properties of the fast inward current. J. Physiol. (London)304:231-249, 1980.

    Google Scholar 

  7. BeMent, S. L., and J. B. Ranck. A quantitative study of electrical stimulation of central myelinated fibers. Exp. Neurol.24:147-170, 1969.

    Google Scholar 

  8. Carp, J. S.Physiological properties of primate lumbar motoneurons. J. Neurophysiol.68:1121-1132, 1992.

    Google Scholar 

  9. Carter, R. R., D. B. McCreery, B. J. Woodford, L. A. Bullara, and W. R. Agnew. Micturition control by microstimulation of the sacral spinal cord of the cat: Acute studies. IEEE Trans. Rehab. Eng.3:206-214, 1995.

    Google Scholar 

  10. Clamann, H. P., and C. G. Kukulka. The relationship between size of motoneurons and their position in the spinal cord. J. Neurophysiol.153:461-466, 1977.

    Google Scholar 

  11. Clements, J. D., and S. J. Redman. Cable properties of cat spinal motoneurones measured by combining voltage clamp, current clamp and intracellular staining. J. Physiol. (London)409:63-87, 1989.

    Google Scholar 

  12. Colbert, C. M., and D. Johnston. Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. J. Neurosci.16:6676-6686, 1996.

    Google Scholar 

  13. Cullheim, S., J. W. Fleshman, W. W. Glenn, and R. E. Burke. Membrane area and dendritic structure in type-identified triceps surae alpha motoneurons. J. Comp. Neurol.255:68-81, 1987.

    Google Scholar 

  14. Cullheim, S., and J. Kellerth. A morphological study of the axons and recurrent axon collaterals of cat α-motoneurones supplying different functional types of muscle unit. J. Physiol. (London)281:301-313, 1978.

    Google Scholar 

  15. Durand, D.The somatic shunt cable model for neurons. Biophys. J.46:645-653, 1984.

    Google Scholar 

  16. Fabricius, C., C. H. Berthold, and M. Rydmark. Dimensions of individual alpha and gamma motor fibers in the ventral funiculus of the cat spinal cord. J. Anat.184:319-333, 1994.

    Google Scholar 

  17. Fleshman, J. W., J. B. Munson, G. W. Sypert, and W. A. Friedman. Rheobase, input resistance, and motor-unit type in medial gastrocnemius motoneurons in the cat. J. Neurophysiol.46:1326-1338, 1981.

    Google Scholar 

  18. Fleshman, J. W., I. Segev, and R. E. Burke. Electronic architecture of type-identified α-motoneurons in the cat spinal cord. J. Neurophysiol.60:60-85, 1988.

    Google Scholar 

  19. Greenberg, R. J., T. J. Velte, M. S. Humayun, G. N. Scarlatis, and E. de Juan. A computational model of electrical stimulation of the retinal ganglion cell. IEEE Trans. Biomed. Eng.46:505-514, 1999.

    Google Scholar 

  20. Grill, W. M.Modeling the effects of electric fields on nerve fibers: Influence of tissue electrical properties. IEEE Trans. Biomed. Eng.46:918-928, 1999.

    Google Scholar 

  21. Grill, W. M., N. Bhadra, and B. Wang. Bladder and urethral pressures evoked by microstimulation of the sacral spinal cord in cats. Brain Res.836:19-30, 1999.

    Google Scholar 

  22. Grill, W. M., and J. T. Mortimer. Stimulus waveforms for selective neural stimulation. IEEE Eng. Med. Biol.14:375-385, 1995.

    Google Scholar 

  23. Gustafsson, B., and E. Jankowska. Direct and indirect activation of nerve cells by electrical pulses applied extracellularly. J. Physiol. (London)258:33-61, 1976.

    Google Scholar 

  24. Gustafsson, B., and M. J. Pinter. An investigation of threshold properties among cat spinal α-motoneurons. J. Physiol. (London)357:453-483, 1984.

    Google Scholar 

  25. Hines, M. L., and N. T. Carnevale. The NEURON simulation environment. Neural Comput.9:1179-1209, 1997.

    Google Scholar 

  26. Jones, K. E., and P. Bawa. Computer simulation of the responses of human motoneurons to composite 1A EPSPs: Effects of background firing rate. J. Neurophysiol.77:405-420, 1997.

    Google Scholar 

  27. Larkum, M. E., M. G. Rioult, and H. R. Luscher. Propagation of action potentials in the dendrites of neurons from rat spinal cord slice cultures. J. Neurophysiol.75:154-170, 1996.

    Google Scholar 

  28. Lilly, J. C., J. R. Hughes, E. C. Alvord, and T. W. Garkin. Brief non-injurious waveforms for stimulation of the brain. Science121:468-469, 1955.

    Google Scholar 

  29. Lipowsky, R., T. Gillessen, and C. Alzheimer. Dendritic Na+ channels amplify EPSPs in hippocampal CA1 pyramidal cells. J. Neurophysiol.76:2181-2191, 1996.

    Google Scholar 

  30. Mainen, Z. F., N. T. Carnevale, A. M. Zador, B. J. Claiborne, and T. H. Brown. Electrotonic architecture of hippocampal CA1 pyramidal neurons based on three-dimensional reconstructions. J. Neurophysiol.76:1904-1923, 1996.

    Google Scholar 

  31. McCreery, D. B., T. G. H. Yuen, W. F. Agnew, and L. A. Bullara. Stimulation with chronically implanted microelectrodes in the cochlear nucleus of the cat: Histologic and physiologic effects. Hear. Res.62:42-56, 1992.

    Google Scholar 

  32. McIntyre, C. C., and W. M. Grill. Model-based design of stimulus waveforms for selective microstimulation in the central nervous system. Proc. 21st. Annu. Int. Conf. IEEE-EMBS. 384, 1999.

  33. McIntyre, C. C., and W. M. Grill. Excitation of central nervous system neurons by nonuniform electric fields. Biophys. J.76:878-888, 1999.

    Google Scholar 

  34. McIntyre, C. C., and W. M. Grill. Sensitivity analysis of a model of mammalian neural membrane. Biol. Cybern.79:29-37, 1998.

    Google Scholar 

  35. McIntyre, C. C., and W. M. Grill. Models of mammalian peripheral nerve: strength-duration properties and anode break excitation. Ann. Biomed. Eng.26:S-103, 1998.

    Google Scholar 

  36. Nowak, L. G., and J. Bullier. Axons but not cell bodies are activated by electrical stimulation in cortical gray matter I. Evidence from chronaxie measurements. Exp. Brain Res.118:477-488, 1998.

    Google Scholar 

  37. Nowak, L. G., and J. Bullier. Axons but not cell bodies are activated by electrical stimulation in cortical gray matter II. Evidence from selective inactivation of cell bodies and axon initial segments. Exp. Brain Res.118:489-500, 1998.

    Google Scholar 

  38. Nowak, L. G., and J. Bullier. Spread of stimulating current in the cortical grey matter of rat visual cortex studied on a new in vitro slice preparation. J. Neurosci. Methods67:237-248, 1996.

    Google Scholar 

  39. Panizza, M., J. Nilsson, B. J. Roth, J. Rothwell, and M. Hallett. The time constants of motor and sensory peripheral nerve fibers measured with the method of latent addition. Electroencephalogr. Clin. Neurophysiol.93:147-154, 1994.

    Google Scholar 

  40. Pudenz, R. H., L. A. Bullara, P. Jacques, and F. T. Ham-brecht. Electrical stimulation of the brain III. The neural damage model. Surg. Neurol.4:389-400, 1975.

    Google Scholar 

  41. Rall, W. Core conductor theory and cable properties of neurons. In: Handbook of Physiology: The Nervous System I, edited by E. R. Kandel. Washington D. C.: American Physiology Society, 1977, pp. 39–97.

  42. Rall, W., R. E. Burke, W. R. Holmes, J. J. B. Jack, S. J. Redman, and I. Segev. Matching dendrite neuron models to experimental data. Physiol. Rev.72:S159-S186, 1992.

    Google Scholar 

  43. Ranck, J. B.Which elements are excited in electrical stimulation of mammalian central nervous system: A review. Brain Res.98:417-440, 1975.

    Google Scholar 

  44. Ranck, J. B., and S. L. BeMent. The specific impedance of the dorsal columns of cat: An anisotropic medium. Exp. Neurol.11:451-463, 1965.

    Google Scholar 

  45. Rattay, F.Analysis of the electrical excitation of CNS neurons. IEEE Trans. Biomed. Eng.45:766-772, 1998.

    Google Scholar 

  46. Roberts, W., and D. Smith. Analysis of threshold currents during microstimulation of fibers in the spinal cord. Acta Physiol. Scand.89:384-394, 1973.

    Google Scholar 

  47. Rubinstein, J. T.Threshold fluctuations in an N sodium channel model of the node of Ranvier. Biophys. J.68:779-785, 1995.

    Google Scholar 

  48. Safronov, B. V., M. Wolff, and W. Vogel. Functional distribution of three types of Na+ channels on soma and processes of dorsal horn neurons of rat spinal cord. J. Physiol. (London)503:371-385, 1997.

    Google Scholar 

  49. Schmidt, E. M., M. J. Bak, F. T. Hambrecht, C. V. Kufta, D. K. O'Rourke, and P. Vallabhanath. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain119:507-522, 1996.

    Google Scholar 

  50. Schwarz, J. R., G. Reid, and H. Bostock. Action potentials and membrane currents in the human node of Ranvier. Pflugers. Arch.430:283-292, 1995.

    Google Scholar 

  51. Spielmann, J. M., Y. Laouris, M. A. Nordstrom, G. A. Robinson, R. M. Reinking, and D. G. Stuart. Adaptation of cat motoneurons to sustained and intermittent extracellular activation. J. Physiol. (London)464:75-120, 1993.

    Google Scholar 

  52. Stoney, S. D., W. D. Thompson, and H. Asanuma. Excitation of pyramidal tract cells by intracortical microstimulation: Effective extent of stimulating current. J. Neurophysiol.31:659-669, 1968.

    Google Scholar 

  53. Thurbon, D., H. R. Luscher, T. Hofstetter, and S. J. Redman. Passive electrical properties of ventral horn neurons in rat spinal cord slices. J. Neurophysiol.79:2485-2502, 1998.

    Google Scholar 

  54. Warman, E. N., W. M. Grill, and D. Durand. Modeling the effects of electric fields on nerve fibers: Determination of excitation thresholds. IEEE Trans. Biomed. Eng.39:1244-1254, 1992.

    Google Scholar 

  55. Wolff, M., W. Vogel, and B. V. Safronov. Uneven distribution of K+ channels in soma, axon, and dendrites of rat spinal neurones: Functional role of the soma in generation of action potentials. J. Physiol. (London)509:767-776, 1998.

    Google Scholar 

  56. Wollner, D. A., and W. A. Catterall. Localization of sodium channels in axon hillocks and initial segments of retinal ganglion cells. Proc. Natl. Acad. Sci. USA83:8424-8428, 1986.

    Google Scholar 

  57. Zengel, J. E., S. A. Reid, G. W. Sypert, and J. B. Munson. Membrane electrical properties and prediction of motor-unit type of medial gastrocnemius motoneurons in the cat. J. Neurophysiol.53:1323-1344, 1985.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McIntyre, C.C., Grill, W.M. Selective Microstimulation of Central Nervous System Neurons. Annals of Biomedical Engineering 28, 219–233 (2000). https://doi.org/10.1114/1.262

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.262

Navigation