Skip to main content
Log in

Dynamic Details of Disparity Convergence Eye Movements

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Classically, the primary tool for quantifying the dynamics of vergence and other eye movements has been the main sequence. The main sequence is a plot of peak velocity versus response amplitude and is particularly useful for comparing the dynamics of a large number of eye movements over a range of response amplitudes. However, the main sequence represents only the equivalent first-order behavior of a response and does not describe its dynamics in detail. Since the main sequence is based on only two points on the dynamic trajectory, it is sensitive to measurement artifacts and noise. A new methodology is presented which quantifies the equivalent second-order dynamics of eye movements using a larger region of the transient response. These new indexes were applied to vergence eye movements and were found to differentiate between subtle, but important differences in movement dynamics. © 1999 Biomedical Engineering Society.

PAC99: 4266Ew, 8719St

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Alvarez, T. L., J. L. Semmlow, and W. Yuan. Closely-spaced, fast dynamics movements in disparity vergence. J. Neurophysiol. 79:37–44, 1998.

    Google Scholar 

  2. Bahill, T. A., M. R. Clark, and L. Stark. The main sequence, a tool for studying human eye movements. Math. Biosci. 24:191–203, 1975.

    Google Scholar 

  3. Bahill, A. T., J. S. Kallman, and J. E. Lieberman. Frequency limitations of the two-point central difference differentiation system. Biol. Cybern. 45:1–4, 1982.

    Google Scholar 

  4. Bahill, A. T., and L. Stark. The trajectories of saccadic eye movements. Sci. Am. 240:108–117, 1979.

    Google Scholar 

  5. Chen, T., Y.-F. Chen, C. H. Lin, and T. T. Tsai. A novel quantification analysis for saccadic eye movements. Ann. Biomed. Eng. (to be published).

  6. Collewijn, H., C. J. Erkelens, and R. M. Steinman. Voluntary binocular gaze-shifts in the plane of regard; Dynamics of version and vergence. Vision Res. 35:335–338, 1995.

    Google Scholar 

  7. Cova, A. C., and H. L. Galiana. A bilateral model integrating vergence and the vestibulo-ocular reflex. Exp. Brain Res. 107:435–452, 1996.

    Google Scholar 

  8. Gamlin, P. D. R., and L. E. Mays. Dynamic properties of medial rectus motoneurons during vergence eye movements. J. Neurophysiol. 67:64–74, 1992.

    Google Scholar 

  9. Horng, J.-L., J. L. Semmlow, G. K. Hung, and K. J. Ciuffreda. Dynamic asymmetries in disparity vergence. Vision Res. 38:1254–1261, 1998.

    Google Scholar 

  10. Hung, G. K., K. J. Ciuffreda, J. L. Semmlow, and J.-L. Horng. Vergence eye movements under natural viewing conditions. Invest. Ophthalmol. Visual Sci. 35:3486–3492, 1994.

    Google Scholar 

  11. Hung, G. K., J. L. Semmlow, and K. J. Ciuffreda. A dualmode dynamic model of the vergence eye movement system. IEEE Trans. Biomed. Eng. 33:1021–1028, 1986.

    Google Scholar 

  12. Jones, R. Fusional vergence; Sustain and transient components. Am. J. Optom. Physiol. Opt. 57:640–664, 1980.

    Google Scholar 

  13. Jones, R., and G. L. Stephen. Horizontal fusional amplitudes. Invest. Ophthalmol. Visual Sci. 30:1638–1642, 1989.

    Google Scholar 

  14. Krishnan, V. V., and L. Stark. A heuristic model of the human vergence eye movement. IEEE Trans. Biomed. Eng. 24:44–49, 1977.

    Google Scholar 

  15. Mays, L. E., J. D. Porter, P. D. R. Gamlin, and C. A. Tello. Neural control of vergence movements; Neurons encoding vergence velocity. J. Neurophysiol. 56:1007–1021, 1986.

    Google Scholar 

  16. Mitchell, D. E. Properties of stimuli eliciting vergence eye movements and stereopsis. Vision Res. 10:145–162, 1970.

    Google Scholar 

  17. Ogle, K. N., T. G. Martens, and J. A. Dyer. Binocular Vision and Fixation Disparity. Philadelphia, PA: Lea and Febiger, 1967.

    Google Scholar 

  18. Rashbass, G., and G. Westheimer. Disjunctive eye movements. J. Physiol. (London) 159:339–360, 1961.

    Google Scholar 

  19. Robinson, D. A. The mechanics of human saccadic eye movement. J. Physiol. (London) 174:245–264, 1964.

    Google Scholar 

  20. Rosenfield, M., and K. J. Ciuffreda. The effects of surround propiquity on the open-loop accommodation response. Invest. Ophthalmol. Visual Sci. 32:142–147, 1991.

    Google Scholar 

  21. Semmlow, J. L., G. K. Hung, and K. J. Ciuffreda. Quantitative assessment of disparity vergence components. Invest. Ophthalmol. Visual Sci. 27:558–564, 1986.

    Google Scholar 

  22. Semmlow, J. L., G. K. Hung, F. Horng, and K. J. Ciuffreda. Disparity vergence eye movements exhibit preprogrammed motor control. Vision Res. 34:1335–1343, 1994.

    Google Scholar 

  23. Semmlow, J. L., G. K. Hung, J.-L. Horng, and K. J. Ciuffreda. The initial control of disparity vergence eye movements. Invest. Ophthalmol. and Visual Sci. 13:48–55, 1993.

    Google Scholar 

  24. Slotine, J.-J. E., and W. Li. Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991, pp. 17–39.

    Google Scholar 

  25. Toates, F. M., Vergence eye movements. Doc. Ophthalmol. 37:153–217, 1974.

    Google Scholar 

  26. Westheimer, G., and D. E. Mitchell. The sensory stimulus for disjunctive eye movements. Vision Res. 9:749–755, 1969.

    Google Scholar 

  27. Zuber, B., and L. Stark, Dynamical characteristics of the fusional vergence eye-movement system. IEEE Trans. Syst. Sci. Cybern. 4:72–79, 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez, T.L., Semmlow, J.L., Yuan, W. et al. Dynamic Details of Disparity Convergence Eye Movements. Annals of Biomedical Engineering 27, 380–390 (1999). https://doi.org/10.1114/1.162

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.162

Navigation