Skip to main content
Log in

Lung tissue rheology and 1/f noise

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The mechanical properties of lung tissue are important contributors to both the elastic and dissipative properties of the entire organ at normal breathing frequencies. A number of detailed studies have shown that the stress adaptation in the tissue of the lung following a step change in volume is very accurately described by the functiont −k for some small positive constantk. We applied step increases in length to lung parenchymal strips and found the ensuing stress recovery to be extremely accurately described byt −k over almost 3 decades of time, despite the quasi-static stress-length characteristics of the strips being highly nonlinear. The corresponding complex impedance of lung tissue was found to have a magnitude that varied inversely with frequency. We note that this is highly reminiscent of a phenomenon known as 1/f noise, which has been shown to occur ubiquitously throughout the natural world. 1/f noise has been postulated to be a reflection of the complexity of the system that produces it, something like a central limit theorem for dynamic systems. We have therefore developed the hypothesis that thet −k nature of lung tissue stress adaptation follows from the fact that lung tissue itself is composed of innumerable components that interact in an extremely rich and varied manner. Thus, although the constantk is no doubt determined by the particular constituents of the tissue, we postulate that the actual functional form of the stress adaptation is not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachofen, H., and J. Hildebrandt. Area analysis of pressure-volume hysteresis in mammalian lungs.J. Appl. Physiol. 30:493–497, 1971.

    CAS  PubMed  Google Scholar 

  2. Bak, P., C. Tang, and K. Wiesenfeld. Self-organized criticality: An explanation of 1/f noise.Phys. Rev. Lett. 59: 381–384, 1987.

    Article  PubMed  Google Scholar 

  3. Bates, J. H. T., M. S. Ludwig, P. D. Sly, K. Brown, J. G. Martin, and J. J. Fredberg. Interrupter resistance elucidated by alveolar pressure measurement in open-chest normal dogs.J. Appl. Physiol. 65:408–414, 1988.

    CAS  PubMed  Google Scholar 

  4. Bayliss, L. E., and G. W. Robertson. The viscoelastic properties of the lungs.Quart. J. Exp. Physiol. 29:27–47, 1939.

    Google Scholar 

  5. Burlatsky, S., and J. Deutch. Influence of solid friction on polymer relaxation in gel electrophoresis.Science 260: 1782–1784, 1993.

    CAS  Google Scholar 

  6. Campbell, M. J., and B. W. Jones. Cyclic changes in the insulin needs of an unstable diabetic.Science 177:889–891, 1972.

    CAS  PubMed  Google Scholar 

  7. Christensen, K., Z. Olami, and P. Bak. Deterministic 1/f noise in nonconservative models of self-organized criticality.Phys. Rev. Lett. 68:2417–2420, 1992.

    Article  PubMed  Google Scholar 

  8. Findley, W. N., J. S. Lai, and K. Onaran. Creep and Relaxation of Nonlinear Viscoelastic Materials. New York: Dover, 1976, 367 pp.

    Google Scholar 

  9. Fredberg, J. J., and D. Stamenovic. On the imperfect elasticity of lung tissue.J. Appl. Physiol. 67:2408–2419, 1989.

    CAS  PubMed  Google Scholar 

  10. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer-Verlag, 1981, 433 pp.

    Google Scholar 

  11. Hantos, Z., B. Daroczy, B. Suki, G. Galgoczy, and T. Csendes. Forced oscillatory impedance of the respiratory system at low frequencies.J. Appl. Physiol. 60:123–132, 1986.

    CAS  PubMed  Google Scholar 

  12. Hantos, Z., B. Darcozy, B. Suki, and S. Nagy. Low-frequency respiratory mechanical impedances in the rat.J. Appl. Physiol. 63:36–42, 1987.

    CAS  PubMed  Google Scholar 

  13. Hantos, Z., B. Daroczy, T. Csendes, B. Suki, and S. Nagy. Modeling of low-frequency pulmonary impedance in dogs.J. Appl. Physiol. 68:849–860, 1990.

    CAS  PubMed  Google Scholar 

  14. Hantos, Z., B. Daroczy, B. Suki, S. Nagy, and J. J. Fredberg. Input impedance and peripheral inhomogeneity of dog lungs.J. Appl. Physiol. 72:168–178, 1992.

    CAS  PubMed  Google Scholar 

  15. Hantos, Z., A. Adamicza, E. Govaerts, and B. Daroczy. Mechanical impedances of lungs and chest wall in the cat.J. Appl. Physiol. 73:427–433, 1992.

    CAS  PubMed  Google Scholar 

  16. Hildebrandt, J. Comparison of mathematical models for cat lung and viscoelastic balloon derived by Laplace transform methods from pressure-volume data.Bull. Math. Biophys. 31:651–667, 1969.

    CAS  PubMed  Google Scholar 

  17. Hildebrandt, J. Pressure-volume data of cat lung interpreted by a plastoelastic, linear viscoelastic model.J. Appl. Physiol. 28:365–372, 1970.

    CAS  PubMed  Google Scholar 

  18. Keshner, M. S. 1/f noise. Proc. IEEE 70:212–218, 1982.

    Google Scholar 

  19. Ludwig, M. S., I. Dreshaj, J. Solway, A. Munoz, and R. H. Ingram. Partitioning of pulmonary resistance during constriction in the dog: Effects of volume history.J. Appl. Physiol. 62:807–815, 1987.

    CAS  PubMed  Google Scholar 

  20. Maksym, G. N., J. H. T. Bates, and D. Navajas. Lung parenchyma stress response to step strains. In Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, Oct. 28–31, 1993, pp. 1116–1117.

  21. Mandelbrot, B. B., and J. W. Van Ness. Fractional brownian motions, fractional noises, and applications. SIAM Rev. 10:422–437, 1968.

    Article  Google Scholar 

  22. Mijailovich, S. M., D. Stamenovic, and J. J. Fredberg. Toward a kinetic theory of connective tissue micro-mechanics.J. Appl. Physiol. 74:665–681, 1993.

    CAS  PubMed  Google Scholar 

  23. Mount, L. E. The ventilation flow-resistance and compliance of rat lungs.J. Physiol. 127:157–167, 1955.

    CAS  PubMed  Google Scholar 

  24. Murch, A. R., and R. H. T. Bates. Colored noise generation through deterministic chaos. IEEETrans. Circuits Systems 37:608–613, 1990.

    Article  Google Scholar 

  25. Navajas, D., S. Mijailovich, G. Glass, D. Stamenovic, and J. J. Fredberg. Dynamic response of the isolated passive rat diaphragm strip.J. Appl. Physiol. 73:2681–2692, 1992.

    CAS  PubMed  Google Scholar 

  26. Otis, A. B., C. B. McKerrow, R. A. Bartlett, J. Mead, M. B. McIlroy, N. J. Selverstone, and E. P. Radford. Mechanical factors in distribution of pulmonary ventilation.J. Appl. Physiol. 8:427–443, 1956.

    CAS  PubMed  Google Scholar 

  27. Paiva, M., M. Englert, P. van Eerdeweghe, and J. C. Yernault. A sigmoid model of the static pressure-volume curve of human lung.Resp. Physiol. 23:317–323, 1975.

    CAS  Google Scholar 

  28. Peslin, R., C. Duvivier, H. Bekkari, E. Reichart, and C. Gallina. Stress adaptation and low-frequency impedance of rat lungs.J. Appl. Physiol. 69:1080–1090, 1990.

    CAS  PubMed  Google Scholar 

  29. Rouse, P. E. A theory of the linear viscoelastic properties of dilute solutions of coiled polymers.J. Chem. Phys. 21: 1272–1280, 1953.

    Article  CAS  Google Scholar 

  30. Sato, J., B. L. K. Davey, F. Shardonofsky, and J. H. T. Bates. Low-frequency respiratory system resistance in the normal dog during mechanical ventilation.J. Appl. Physiol. 70:1536–1543, 1991.

    CAS  PubMed  Google Scholar 

  31. Stamenovic, D., G. M. Glass, G. M. Barnas, and J. J. Fredberg. Viscoplasticity of respiratory tissues.J. Appl. Physiol. 69:973–988, 1990.

    CAS  PubMed  Google Scholar 

  32. Suki, B., R. Peslin, C. Duvivier, and R. Farre. Lung impedance in healthy humans measured by forced oscillations from 0.01 to 0.1 Hz.J. Appl. Physiol. 67:1623–1629, 1989.

    CAS  PubMed  Google Scholar 

  33. Suki, B., and J. H. T. Bates. A nonlinear viscoelastic model of lung tissue mechanics.J. Appl. Physiol. 71:826–833, 1991.

    CAS  PubMed  Google Scholar 

  34. Voss, R. F. 1/f (flicker) noise: A brief review. In Proc. 33rd Ann. Symp. Frequency Contr. Atlantic City, NJ, 1979, pp. 40–46.

  35. Voss, R. F., and J. Clarke. 1/f noise in music: Music from 1/f noise.J. Acoust. Soc. Am. 63:258–263, 1978.

    Article  Google Scholar 

  36. West, B. J., and M. F. Schlesinger. On the ubiquity of 1/f noise.Int. J. Mod. Phys. 3:795–819, 1989.

    Google Scholar 

  37. West, B. J. Physiology in fractal dimensions: Error tolerance.Ann. Biomed. Eng. 18:135–149, 1990.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bates, J.H.T., Maksym, G.N., Navajas, D. et al. Lung tissue rheology and 1/f noise. Ann Biomed Eng 22, 674–681 (1994). https://doi.org/10.1007/BF02368292

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368292

Keywords

Navigation