Skip to main content
Log in

Activity of free and immobilized glucose oxidase: An electrochemical study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The activity of free and immobilized glucose oxidase was determined using a sandwich type thin-layer electrochemical cell. The thin-layer cell consisted of a gold electrode deposited on a glass microscope slide, 165 μm thick Teflon TFE spacers, and a glass cover. Enzyme activity was determined by using cyclic voltammetry to measure the amount of hydrogen peroxide produced in the glucose oxidase catalyzed redox reaction between glucose and oxygen in the thin-layer cell. The specific activity of 13.4 nM glucose oxidase in 0.2 M aqueous sodium phosphate, pH 5.2 at room temperature, was calculated to be 4.34 U/mg GOx. Under the same experimental conditions, qualitative detection of the activity of glucose oxidase covalently immobolized to a thin radiofrequency plasma modified poly(etherurethaneurea) film was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CDAP:

1-cyano-4-dimethylaminopyridinium tetrafluoroborate

DD water:

distilled, deionized water

F :

Farraday's constant

GOx:

glucose oxidase

GOx-PPNVP/PEUU:

glucose oxidase immobilized onto poly(etherurethaneurea) modified with plasma polymerizedN-vinyl-2-pyrrolidone

M :

number of moles

PEUU:

poly(etherurethaneurea)

PPNVP:

plasma polymerizedN-vinyl-2-pyrrolidone

PPNVP/PEUU:

poly(etherurethaneurea) modified with plasma polymerizedN-vinyl-2-pyrrolidone

Q :

charge

R :

resistance

RHE:

reversible hydrogen electrode

RIA:

radioimmunoassay

SCE:

saturated calomel electrode

t :

sampling time

References

  1. Adzic, R.R.; Hsiao, M.N.; Yeager, E.B. Electrochemical oxidation of glucose on single crystal gold surfaces. J. Electroanal. Chem. 260:475–485; 1989.

    Article  CAS  Google Scholar 

  2. Amadelli, R.; Molla, J.; Bindra, P.; Yeager, E. Influence of metal ions on the O2 reduction of noble metals in alkaline solutions. J. Electrochem. Soc. 128:2706–2709; 1981.

    CAS  Google Scholar 

  3. Bolzan, A.E.; Iwasita, T.; Vielstich, W.: On the electrochemical oxidation of glucose: Identification of volatile products by on-line, mass spectroscopy. J. Electrochem. Soc. 134:3052–3058; 1987.

    CAS  Google Scholar 

  4. Danilich, M.J.; Kottke-Marchant, K.; Anderson, J.M.; Marchant, R.E. The immobilization of glucose oxidase onto radiofrequency plasma modified poly(etherurethaneurea). J. Biomat. Sci. Polym. Ed. 3:195–216; 1992.

    CAS  Google Scholar 

  5. Gloger, M.; Tischer, W. Determination of the catalytic activity of immobilized enzymes. In: Bergmeyer, H.U., ed. Methods of enzymatic analysis, third ed., vol. 1, Weinheim: Verlag Chemie; 1983: pp. 142–163.

    Google Scholar 

  6. Goldberg, I.B.; Bard, A.J. Resistive effects in thin electrochemical cells: Digital simulations of current and potential steps in thin layer electrochemical cells. J. Electroanal. Chem. 38:313–322; 1972.

    Article  CAS  Google Scholar 

  7. Heineman, W.R.; Kissinger, P.T. Cyclic voltammetry: Electrochemical equivalent of spectroscopy. Am. Lab. 29:313–322; 1982.

    Google Scholar 

  8. Heineman, W.R.; Jensen, W.B. Spectroelectrochemistry using transparent electrodes; an anecdotal history of the early years. In: Stock, J.T.; Orna, M.V., eds. Electrochemistry, past and present. Washington, D.C.: American Chemical Society; 1989: p. 442.

    Google Scholar 

  9. Hubbard, A.T.; Anson, F.C. The theory and practice of electrochemistry with thin-layer cells. In: Bard, A.J., ed. Electroanalytical chemistry, vol. 7. New York: Marcel Dekker, 1970: p. 129.

    Google Scholar 

  10. Kadish, A.H.; Hall, D.A. A new method for the continuous monitoring of blood glucose by measurement of dissolved oxygen. Clin. Chem. 11:869–875; 1965.

    CAS  PubMed  Google Scholar 

  11. Kohn, J.; Wilchek, M. 1-cyano-4-dimethylamino pyridinium tetrafluoroborate as a cyanylating agent for the covalent attachment of ligand to polysaccharide resins. FEBS Lett. 154:209–210; 1983.

    Article  CAS  Google Scholar 

  12. Larew, L.A.; Johnson, D.C. Concentration dependence of the mechanism of glucose oxidation at gold electrodes in alkaline media. J. Electroanal. Chem. 262:167–182; 1989.

    CAS  Google Scholar 

  13. Marchant, R.E.; Yu, D.; Khoo, C. Preparation and characterization of plasma-polymerizedN-vinyl-2-pyrrolidone films. J. Polym. Sci., Polym. Chem. 27:881–895; 1989.

    Article  CAS  Google Scholar 

  14. Marchant, R.E.; Johnson, S.D.; Schneider, B.H.; Agger, M.P.; Anderson, J.M. A hydrophilic plasma polymerized film composite with potential application as an interface for biomaterials. J. Biomed. Mater. Res. 24:1521–1537; 1990.

    Article  CAS  PubMed  Google Scholar 

  15. Marchant, R.E.; Li, X.; Yu, D.; Danilich, M.J. Functionalized plasma polymers by chemical derivatization. ACS Polymer Preprints. 31: 1990.

  16. Moss, D.W. Nomenclature and units in enzymology. In: Bergmeyer, H.U. ed. Methods of enzymatic analysis, third ed., vol. 1. Weinheim: Verlag Chemie; 1983:pp. 7–14.

    Google Scholar 

  17. Nikolaeva, N.N.; Khazova, O.A.; Vasiliev, Y.B. Main principles of the electrooxidation of glucose on a gold electrode. Soviet Electrochem. 19:934–940; 1983.

    Google Scholar 

  18. Pazur, J.H.; Kleppe, K. The oxidation of glucose and related compounds by glucose oxidase fromAspergillus niger. Biochemistry 3:578–583; 1965.

    Google Scholar 

  19. Rao, J.R.; Richter, G.J.; von Sturm, F.; Weidlich, E. The performance of glucose electrodes and the characteristics of different biofuel cell constructions. Bioelectrochem. Bioeng. 3:139–150; 1976.

    Article  CAS  Google Scholar 

  20. Razaq, M.; Domurat, M.; Hsiao, M.W.; Gervasio, D.; Adzic, R.; Yeager, E.B. Electrochemical studies of the oxidation of glucose on polycrystalline gold in phosphate buffer usingin situ FTIR spectroscopy. Electrochemical Society Spring Meeting, Los Angeles, Extended Abstracts, 89-1, 639, 1989.

  21. Scheller, F.W., Pfeiffer, D.; Schubert, F.; Renneberg, R.; Kirstein, D. Applications of enzyme-based amperometric biosensors to the analysis of ‘real’ samples. In: Turner, A.P.F.; Karube, I.; Wilson, G.S., eds. Biosensors: Fundamentals and applications. New York: Oxford University Press; 1987: pp. 315–346.

    Google Scholar 

  22. Swoboda, B.E.P.; Massey, V. Purification and properties of the glucose oxidase fromAspergillus niger. J. Biol. Chem. 240:2209–2215; 1965.

    CAS  PubMed  Google Scholar 

  23. Tom, G.M.; Hubbard, A.T. Thin-layer electrochemistry; minimization of uncompensated resistance. Anal. Chem. 43:671–674; 1971.

    Article  CAS  Google Scholar 

  24. Tsuge, H.; Natsuaki, O.; Ohashi, K. Purification, properties, and molecular features of glucose oxidase fromAspergillus niger. J. Biochem. 78:835–843; 1975.

    CAS  PubMed  Google Scholar 

  25. Tsuge, H.; Mitsuda, H. Reconstitution of flavin-adenine dinucleotide in the apoenzyme of glucose oxidase. J. Vitaminol. 17:24–31; 1971.

    CAS  Google Scholar 

  26. Tsuge, H.; Mitsuda, H. Studies on the molecular complex of flavins IV. Activity and FAD-fluorescence charge caused by the chemical modification of tryptophyl and tryosyl residues in glucose oxidase. J. Biochem. 73:199–206; 1973.

    CAS  PubMed  Google Scholar 

  27. Turner, A.P.F.; Karube, I.; Wilson, G.S., eds. Biosensors: Fundamentals and applications. New York: Oxford University Press; 1987: pp. 315–346.

    Google Scholar 

  28. Vilambi N.R.K.; Taylor, E.J. CPRM: A new method for quantitative detection of peroxide formation during oxygen reduction using the rotating ring-disc electrode technique. J. Electroanal. Chem. 270:61–77; 1989.

    Article  CAS  Google Scholar 

  29. Woodard, F.E.; Reilley, C.N. Thin-layer cell techniques. In: Yeager, E.; Bockris, J. O'M.; Conway, B.E.; Sarangapani, S., eds. Comprehensive treatise of electrochemistry, vol. 9. New York: Plenum Press; 1984: pp. 353–392.

    Google Scholar 

  30. Yildiz, A.; Kissinger, P.T.; Reilley, C.N. Evaluation of an improved thin-layer electrode. Anal. Chem. 40:1018–1024; 1968.

    Article  CAS  Google Scholar 

  31. Yu, D.; Marchant, R.E. Formation of hydroxyl groups in plasma polymerizedN-vinyl-2-pyrrolidone by reduction with sodium borohydride. Macromolecules 22:2957–2961; 1989.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danilich, M.J., Gervasio, D. & Marchant, R.E. Activity of free and immobilized glucose oxidase: An electrochemical study. Ann Biomed Eng 21, 655–668 (1993). https://doi.org/10.1007/BF02368645

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368645

Keywords

Navigation