Skip to main content
Log in

Influence of Powder Particle Size on the Oxidation Behavior of a PM Ni3Al Alloy

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The influence of particle size on the oxidationbehavior of Ni3Al prepared by powdermetallurgy (PM) was investigated in the temperaturerange of 535 to 1020°C for exposures up to 200 hr.Four alloys were obtained, each one processed with a differentpowder particle size fraction (<25, 25-50, 50-100,and 100-200 μm). For temperatures below 730°C,the scale consists of an outer NiO layer, a thindiscontinuous intermediate nickel layer, and an internaloxidation zone. The lowest oxidation rate corresponds tothe material with the smallest particle size. Thisresults from its higher grain-boundary density; the boundaries act as easy-diffusion paths foraluminum leading to the rapid formation of a continuousinner alumina layer. At temperatures above 730°C, athree layered scale is observed consisting of an outer NiO layer, an intermediate layer that,depending on temperature, consisted of a mixture ofnickel and aluminum oxides orNiAl2O4, and an inner layer ofAl2O3, which accounts for thehigher oxidation resistance. The oxidation attack is characterized byintrusions of the scale into the alloy, the intrusionnumber increasing as the particle size decreases. It isassumed that oxide particles and impurities present at the original particle boundaries facilitatealumina growth along these regions. Thus, the lowestoxidation rate for the highest temperature rangecorresponds to the largest particle-sizematerial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. J. Yurek, D. Even, and A. Garratt-Reed, Metall. Trans. 13A, 473 (1982).

    Google Scholar 

  2. D. R. Baer and M. D. Merz, Metall. Trans. 11A, 1973 (1980).

    Google Scholar 

  3. M. D. Merz, Metall. Trans. 10A, 71 (1979).

    Google Scholar 

  4. M. K. Hossain, Corros. Sci. 19, 1031 (1979).

    Google Scholar 

  5. F. S. Giggins and F. S. Pettit, Trans. TMS-AIME 245, 2495 (1969).

    Google Scholar 

  6. F. S. Giggins and F. S. Pettit, Trans. TMS-AIME 245, 2509 (1969).

    Google Scholar 

  7. G. J. Yurek, Proc. 8th Int. Congr. Met. Corros., Mainz, 6-11 Sept., DECHEMA, 1981, Vol. 1, p. 630.

    Google Scholar 

  8. J. G. Goedjen and D. A. Shores, Oxid. Met. 37, 125 (1992).

    Google Scholar 

  9. G. J. Yurek, D. B. Noble, and A. Garrett-Reed, Proc. Int. Congr. Met. Corros., Toronto, 3-7 June, 1984, National Research Council of Canada, Vol. 2, pp. 649–653.

    Google Scholar 

  10. R. K. Singh Raman, R. K. Dayal, A. S. Khanna, and J. B. Gnanamoorthy, J. Mater. Sci. Lett. 8, 277 (1989).

    Google Scholar 

  11. R. K. Singh Raman, A. S. Khanna, and J. B. Gnanamoorthy, Oxid. Met. 37, 1 (1992).

    Google Scholar 

  12. F. Abe, H. Araki, H. Yoshida, M. Okada, and R. Watanabe, Corros. Sci. 21, 819 (1981).

    Google Scholar 

  13. M. Takeyama and C. T. Liu, Acta Metall. 37, 2681 (1989).

    Google Scholar 

  14. M. Takeyama and C. T. Liu, Mater. Res. Soc., Symp. Proc. 133, 293 (1989).

    Google Scholar 

  15. U. Brill, Werkst. Korros. 41, 682 (1990).

    Google Scholar 

  16. P. Pérez, J. L. González-Carrasco, and P. Adeva, Oxid. Met. 48, 143 (1997).

    Google Scholar 

  17. P. Pérez, J. L. González-Carrasco, G. Caruana, M. Lieblich, and P. Adeva, Mater. Charact. 33, 349 (1994).

    Google Scholar 

  18. P. Pérez, J. L. González-Carrasco, and P. Adeva, Mater. Sci. Eng. A199, 211 (1995).

    Google Scholar 

  19. P. Pérez, Ph.D. Dissertation. Univ. Complutense of Madrid, Spain, 1996.

    Google Scholar 

  20. D. L. Douglass, Corros. Sci. 8, 665 (1968).

    Google Scholar 

  21. L. N. Larikov, in “Intermetallics Compounds. Principles and Practices,” J. H. Westbrook and R. L. Fleischer, eds. (John Wiley & Sons Ltd, England, 1995), Vol. 1, Chap. 32, p. 757.

    Google Scholar 

  22. H. Nakajima, W. Sprengel, and K. Nonaka, Intermetallics 4, 17 (1996).

    Google Scholar 

  23. P. Pérez, J. L. González-Carrasco, and P. Adeva, Corros. Sci., to be published (1998).

  24. M. W. Brumm, H. J. Grabke, and W. Wagemann, Corros. Sci. 36, 37 (1994).

    Google Scholar 

  25. I. Rommerskirchen and V. Kolarik, Werkst. Korros. 47, 625 (1996).

    Google Scholar 

  26. H. J. Grabke, M. W. Brumm, and W. Wagemann, Werkst. Korros. 47, 675 (1996).

    Google Scholar 

  27. A. Katsman, H. J. Grabke, and L. Levin, Oxid. Met. 46, 313 (1996).

    Google Scholar 

  28. P. Kofstad, “High Temperature Corrosion.” (Elsevier Applied Science, England, 1988).

    Google Scholar 

  29. B. A. Pint, Oxid. Met. 45, 1 (1996).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez, P., Gonzalez-Carrasco, J.L. & Adeva, P. Influence of Powder Particle Size on the Oxidation Behavior of a PM Ni3Al Alloy. Oxidation of Metals 49, 485–507 (1998). https://doi.org/10.1023/A:1018898812184

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018898812184

Navigation