Skip to main content
Log in

The effect of an applied electric field on the oxidation of aluminum in the temperature range 50–400°C

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

This paper describes some oxidation studies of evaporated aluminum films. Resistance marker measurements were carried out between 230 and 400° C and it was concluded that the oxide grows by metal transport. From the sign of its Seebeck coefficient, the oxide was deduced to ben-type. The effect of applying an electric field across the growing oxide layer on aluminum was also investigated. A porous platinum layer evaporated onto the oxide surface was used as one electrode, the underlying metal being the other electrode. At all temperatures between 50 and 400° C the same field effect was observed. When the oxygen-oxide interface was biased negative with respect to the aluminum, an enhancement of the oxidation rate was achieved. These results have been interpreted in terms of the Mott-Cabrera theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Steidel and D. Gerstenberg,J. Appl. Phys. 40, 3828 (1969).

    Google Scholar 

  2. W. J. Moore,Phil. Mag. 43, 688 (1952).

    Google Scholar 

  3. I. M. Ritchie and G. L. Hunt,Surface Sci. 15, 524 (1969).

    Google Scholar 

  4. H. H. Uhlig and A. E. Brenner,Acta Met. 3, 108 (1955).

    Google Scholar 

  5. D. Cismaru and G. D. Cismaru,Proc. First Intern. Congress of Metallic Corrosion (London, 1961), p. 194.

  6. F. Shein, B. Le Boucher, and P. Lacompe,Compt. Rend. (Paris) 252, 4157 (1961).

    Google Scholar 

  7. J. R. Anderson and I. M. Ritchie,Proc. Roy. Soc. (London) A299, 371 (1967).

    Google Scholar 

  8. P. J. Jorgensen,J. Electrochem. Soc. 110, 461 (1963).

    Google Scholar 

  9. P. J. Jorgensen,J. Chem. Phys. 37, 874 (1962).

    Google Scholar 

  10. D. H. Bradhurst, J. E. Draley, and C. J. Van Drunen,J. Electrochem. Soc. 112, 1171 (1965).

    Google Scholar 

  11. I. M. Ritchie and R. K. Tandon, unpublished results.

  12. I. M. Ritchie, G. H. Scott, and P. J. Fensham,Surface Sci. 19, 230 (1970).

    Google Scholar 

  13. P. K. Krishnamoorthy and S. C. Sircar,Acta Met. 16, 1461 (1968).

    Google Scholar 

  14. D. O. Raleigh,J. Electrochem. Soc. 113, 782 (1966).

    Google Scholar 

  15. P. J. Jorgensen,J. Electrochem. Soc. 114, 820 (1967).

    Google Scholar 

  16. I. M. Ritchie and R. K. Tandon, accepted for publication bySurface Sci.

  17. J. E. Boggio and R. C. Plumb,J. Chem. Phys. 44, 1081 (1966).

    Google Scholar 

  18. T. N. Krylova,Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, No. 10, 89 (1938).

    Google Scholar 

  19. N. Cabrera and J. Hamon,Compt. Rend. (Paris) 224, 1713 (1947).

    Google Scholar 

  20. E. A. Gulbransen and W. S. Wysong,J. Phys. Chem. 51, 1087 (1947).

    Google Scholar 

  21. G. Hass,Z. Anorg. Allgem. Chem. 254, 96 (1947).

    Google Scholar 

  22. W. W. Smeltzer,J. Electrochem. Soc. 103, 209 (1956).

    Google Scholar 

  23. C. Weissmantel,Werkstoffe Korrosion 13, 682 (1962).

    Google Scholar 

  24. M. J. Dignam,J. Electrochem. Soc. 109, 192 (1962).

    Google Scholar 

  25. A. F. Beck, M. A. Heine, E. J. Caule, and M. J. Pryor,Corrosion Sci. 7, 1 (1967).

    Google Scholar 

  26. C. Wagner,Z. Physik. Chem. B21, 42 (1933).

    Google Scholar 

  27. J.A.N.A.F. Thermochemical Tables, First Addendum, prepared by D. R. Stullet al. (Dow Chemical Co., Midland, Michigan, 1966).

  28. I. M. Ritchie and G. H. Scott, in preparation.

  29. M. J. Dignam, W. R. Fawcett, and H. Böhni,J. Electrochem. Soc. 113, 656 (1966).

    Google Scholar 

  30. I. M. Ritchie, J. V. Sanders, and P. L. Weickhardt, in preparation.

  31. W. H. J. Vernon, E. I. Akeroyd, and E. G. Stroud,J. Inst. Metals 65, 301 (1939).

    Google Scholar 

  32. U. R. Evans,Rev. Pure Appl. Chem. 5, 1 (1955).

    Google Scholar 

  33. N. Cabrera and N. F. Mott,Rept. Progr. Phys. 12, 163 (1948–49).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunt, G.L., Ritchie, I.M. The effect of an applied electric field on the oxidation of aluminum in the temperature range 50–400°C. Oxid Met 2, 361–371 (1970). https://doi.org/10.1007/BF00604476

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00604476

Keywords

Navigation