Skip to main content
Log in

The influence of electrode potential on the corrosion of gas turbine alloys in sulfate melts

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The influence of the electrode potential on the corrosion behavior of a series of nickel- and cobalt-base gas turbine alloys has been investigated in a (mole %) 53Na2SO4+7CaSO4+40MgSO4 melt at 1073 and 1173 K and in a 90Na2SO4+10K2SO4 melt at 1173 K. Only acidic fluxing is observed in the (Na 2,Ca, Mg)SO4 melt at positive potentials while a protective scale rich in MgO is formed on all alloys at negative potentials. This scale prevents basic fluxing because MgO is insoluble in neutral and basic melts. The breakthrough potential for acidic fluxing is a function of the material composition. Increasing chromium content of the alloys extends the potential range of protective film formation. Acidic and basic fluxing are observed in the (Na, K)2SO4 melt. Acidic fluxing occurs at positive and basic fluxing at negative potentials. A protective scale is formed in an intermediate (neutral) potential range on the high-chromium alloys IN-597 and IN-738 LC. Here, too, the breakthrough potentials for acidic and basic fluxing are influenced by the composition of the alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. T. Reid,External Corrosion and Deposits, Boilers and Gas Turbines (Elsevier, New York, 1971).

    Google Scholar 

  2. A. B. Hart and A. J. B. Cutler,Deposition and Corrosion in Gas Turbines (Applied Science Publishers, London, 1973).

    Google Scholar 

  3. R. W. Bryers,Ash Deposits and Corrosion Due to Impurities in Combustion Gases (Hemisphere, Washington, D.C., 1978).

    Google Scholar 

  4. D. Coutsouradis, P. Felix, H. Fischmeister, L. Habraken, Y. Lindblom, and M. O. Speidel,High Temperature Alloys for Gas Turbines (Applied Science Publishers, London, 1978).

    Google Scholar 

  5. A. Rahmel, inMolten Salt Technology, D. G. Lovering, ed. (Plenum, New York, 1982) p. 265.

    Google Scholar 

  6. A. Rahmel and E. Tatar-Moisescu,Werkst. Korros. 26, 513 (1975).

    Google Scholar 

  7. U. Jäkel and W. Schwenk,Werkst. Korros. 26, 521 (1975).

    Google Scholar 

  8. A, Rahmel, inAsh Deposits and Corrosion Due to Impurities in Combustion Gases (Hemisphere, Washington, D.C., 1978), p. 185.

    Google Scholar 

  9. A. Rahmel,Werkst. Korros. 28, 299 (1977).

    Google Scholar 

  10. N. S. Bornstein and M. A. DeCrescente,Trans. AIME,245, 1947 (1968).

    Google Scholar 

  11. J. A. Goebel and F. S. Pettit,Metall. Trans,1, 1943, 3421 (1970).

    Google Scholar 

  12. W. P. Stroud and R. A. Rapp inHigh Temperature Metal Halide Chemistry, D. H. Hildenbrand and D. D. Cubicciotti, eds. (The Electrochemical Society, Princeton, 1978), p. 574.

    Google Scholar 

  13. D. K. Gupta and R. A. Rapp,J. Electrochem. Soc. 127, 2194 (1980).

    Google Scholar 

  14. A. Rahmel,Electrochim. Acta,21, 853 (1976).

    Google Scholar 

  15. E. Tatar-Moisescu and A. Rahmel,Electrochim. Acta 20, 479 (1975).

    Google Scholar 

  16. A. Rahmel,Werkst. Korros. 19, 750 (1968).

    Google Scholar 

  17. R. A. Rapp and K. S. Goto, in2nd International Symposium on Molten Salts, A. Braunstein and F. Selman, eds. (The Electrochemical Society, Princeton, N.J., 1982).

    Google Scholar 

  18. A. Rahmel,Electrochim. Acta,15, 1267 (1970).

    Google Scholar 

  19. A. Rahmel, M. Schmidt, and W. T. Wu,Electrochim. Acta to be published.

  20. H.-E. Bühler and H. P. Hougardy, “Atlas of Interference Layer Metallography”, Deutsche Gesellschaft für Metallkunde, Oberursel 1980 (available also at The American Society of Metals and the Metals Society).

  21. E. Erdös, inDeposition and Corrosion in Gas Turbines (Applied Science Publishers, London, 1973), p. 115.

    Google Scholar 

  22. W. T. Wu, I. Aydin and H.-E. Bühler,Prakt. Metallogr. 19, 322 (1982).

    Google Scholar 

  23. A. Rahmel, M. Schorr, and W. T. Wu, to be published.

  24. J. W. Born and C. H. MacGillavry,Rec. Trav. Chim. Pays Bos,61, 910 (1942).

    Google Scholar 

  25. W. Rüdorff and K. Stegemann,Z. Anorg. Allg. Chem. 251, 376 (1943).

    Google Scholar 

  26. P. F. Bongers, C. F. van Bruggen, J. Koopstra, W. P. F. A. M. Ornloo, G. A. Wiegers, and F. Jellinek,J. Phys. Chem. Solids,29, 977 (1968).

    Google Scholar 

  27. E. Erdös, A. Rahmel, M. Schorr, and W. T. Wu,Oxid. Met. to be published.

  28. J. Stringer inProceeding of the Symposium on Properties of High Temperature Alloys, Z. A. Foroulis and F. S. Pettit, eds. (The Electrochemical Society, New York, 1976), p. 513.

    Google Scholar 

  29. W. T. Wu and A. Rahmel, to be published.

  30. A. Rahmel,Electrochim. Acta,13, 495 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahmel, A., Schmidt, M. & Schorr, M. The influence of electrode potential on the corrosion of gas turbine alloys in sulfate melts. Oxid Met 18, 195–223 (1982). https://doi.org/10.1007/BF00662038

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00662038

Key words

Navigation