Skip to main content
Log in

Calcium regulation in the human myocardium affected by dilated cardiomyopathy: A structural basis for impaired Ca2+-sensitivity

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Calcium regulation in the human heart is impaired during idiopathic dilated cardiomyopathy (IDC). Here, we analyze the structural basis for impairment in the regulatory mechanism. Regulation of contractility was monitored by MgATPase and Ca2+-binding assays as a function of calcium. Myofibrillar proteolysis and expression of troponin T isoforms were established by gel electrophoresis and by Western blots. Myofibrillar ATPase assays in low salt however, revealed a drastic lowering of calcium sensitivity in IDC myofibrils as indicated by reductions in both activation by high calcium and in EGTA-mediated inhibition of MgATPase. Structural changes in myofilament proteins were found in most IDC hearts, specifically proteolysis of myosin light chain 2 (LC2), troponin T and I (TnT and TnI), and sometimes large isoform shift in TnT. IDC did not induce mutations in LC2 and troponin C (TnC), as established by cDNA sequence data from IDC cases, thus, calcium binding to IDC myofibrils was unaffected. Reassociation of IDC myofibrils with native LC2 raised MgATPase activation at high Ca2+ to control levels, while repletion with intact, canine TnI/TnT restored inhibition at low Ca2+. A model, identifying possible steps in the steric blocking mechanism of regulation, is proposed to explain IDC-induced changes in Ca2+-regulation. Moreover, shifts in TnT isoforms may imply either a genetic or a compensatory factor in the development and pathogenesis of some forms of IDC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Silver M, Silver M: Cardiomyopathies. 2nd edn. In: M.S. Silver, M. Silver (eds). Cardiovascular Pathology. Vol. 1. Churchill Livingston, New York, 1991, pp 743–810

    Google Scholar 

  2. Sugrue DD, Rodeheeffer RJ, Codd MB, Ballard DJ, Fuster V, Gersh BJ: The clinical course of idiopathic dilated cardiomyopathy. Ann Int Med 117: 117–123, 1992

    PubMed  Google Scholar 

  3. Pagani ED, Alousi AA, Grant AM, Older TM, Dziuban SW, Allen PD: Changes in myofibrillar content and Mg-ATPase activity in ventricular tissues from patients with heart failure caused by coronary artery disease, cardiomyopathy, or mitral valve insufficiency. Circ Res 63: 380–385, 1988

    PubMed  Google Scholar 

  4. Mulieri LA, Hasenfuss G, Leavitt B, Allen PD, Alpert NR: Altered myocardial force-frequency relation in human heart failure. Circulation 85: 1743–1750, 1992

    PubMed  Google Scholar 

  5. Solaro RJ, Powers FM, Gao L, Gwathmey JK: Control of myofilament activation in heart failure. Circulation 87: 38–43, 1993

    PubMed  Google Scholar 

  6. Anderson PAW, Grieg A, Mark TR, Malouf NN, Oakeley AE, Ungerleider RM, Allen PD, Kay BK: Molecular basis of human cardiac troponin T isoforms expressed in the developing, adult, and failing heart. Circ Res 76: 681–686, 1995

    PubMed  Google Scholar 

  7. Dhalla NS, Sulakhe PV, Fedelesova M, Yates JC: Molecular abnormalities in cardiomyopathy: Comparative pathology of the hearts. Adv Cardiol 13: 282–300, 1974

    PubMed  Google Scholar 

  8. Morkin E, Flink IL, Goldman S: Myosin isoenzymes in cardiac hypertrophy. In: N.R. Alpert (ed). Perspectives in Cardiovascular Research, Vol. 7. Raven Press, New York, 1983, pp 393–398

    Google Scholar 

  9. Buttrick P, Malhotra A, Factor S, Geenen D, Leinwand L, Scheuer J: Effect of aging and hypertension on myosin biochemistry and gene expression in the rat heart. Circ Res 68: 645–652, 1991

    PubMed  Google Scholar 

  10. Watkins H, Conner D, Thierfelder L, Jarcho JA, MacRae C, McKenna WJ, Maron BJ, Seidman JG, Seidman CE: Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nature Gen 11: 434–437, 1995

    Google Scholar 

  11. Corbett JM, Wheeler CH, Why HH, Richardson PJ, Yacoub MH, Dunn JJ: Studies on protein changes in dilated cardiomyopathy using twodimensional electrophoresis. J Mol Cell Cardiol 27: A110, 1995

    Google Scholar 

  12. Anderson PAW: Malouf NN, Oakeley A, Pagani ED: Troponin T isoform expression in humans. A comparison among normal and failing adult heart, fetal heart and adult and fetal skeletal muscle. Circ Res 69: 1226–1233, 1991

    PubMed  Google Scholar 

  13. Nassar R, Malouf NN, Kelly MB, Oakeley AE, Anderson PAW: Forcep-Ca relation and troponin T isoforms of rabbit myocardium. Circ Res 69: 1471–1475, 1991

    Google Scholar 

  14. Margossian SS, White HD, Caulfield JB, Norton P, Taylor S, Slayter HS: Light chain 2 profile and activity of human ventricular myosin during dilated cardiomyopathy: Identification of a causal agent for impaired myocardial function. Circulation 85: 1720–1733, 1992

    PubMed  Google Scholar 

  15. Margossian SS, Anderson PAW, Norton P, Caulfield JB, Chantler PD, Slayter HS: Altered control of troponin T gene and increased activity of mekratin, a protease, in dilated cardiomyopathy. J Mol Cell Cardiol 27: A108, 1995

    Google Scholar 

  16. Margossian SS, Anderson PAW, Norton P, Caulfield JB, Chantler PD, Slayter HS: Ca2+-regulation and myofibrillar structure in human cardiomyopathic hearts. Biophys J 70: A160, 1996

    Google Scholar 

  17. Margossian SS: Reversible dissociation of dog cardiac myosin regulatory light chain 2 and its influence on ATP hydrolysis. J Biol Chem 260: 13747–13754, 1985

    PubMed  Google Scholar 

  18. Anderson PAW, Moore GE, Nassar R: Developmental changes in the expression of rabbit left ventricular troponin T. Circ Res 63: 742–747, 1988

    PubMed  Google Scholar 

  19. Holt JC, Hatcher VB, Caulfield JB, Norton P, Umeda PK, Melendez JA, Martino L, Mudzinsky SP, Blumenstock F, Slayter HS, Margossian SS: Cloning of the cDNA and nucleotide sequence of a skeletal muscle protease from myopathic hamsters. Mol Cell Biochem 181: 125–135, 1998

    PubMed  Google Scholar 

  20. Tobacman LS: Activation of actin-cardiac myosin subfragment 1 MgATPase rate by Ca2+ shows cooperativity intrinsic to the thin filament. Biochemistry 26: 492–497, 1987

    PubMed  Google Scholar 

  21. Margossian SS, Cohen C: Troponin subunit interactions. J Mol Biol 81: 409–413, 1973

    PubMed  Google Scholar 

  22. Potter JD: The content of troponin, tropomyosin, actin and myosin in rabbit skeletal muscle myofibrils. Arch Biochem Biophys 162: 436–441, 1974

    PubMed  Google Scholar 

  23. Hatakenaka M, Ohtsuki I: Replacement of three troponin components with cardiac troponin components within single glycerinated skeletal muscle fibers. Biochem Biophys Res Commun 181: 1022–1027, 1991

    PubMed  Google Scholar 

  24. Kendrick-Jones J, Lehman W, Szent-Gyorgyi AG: Regulation in molluscan muscles. J Mol Biol 54: 313–326, 1970

    PubMed  Google Scholar 

  25. Chantler PD, Szent-Gyorgyi: Regulatory light chains and scallop myosin. Full dissociation, reversibility and cooperative effect. J Mol Biol 138: 473–492, 1980

    PubMed  Google Scholar 

  26. Goodwin EB, Leinwand LA, Szent-Gyorgyi AG: Regulation of scallop myosin by mutant regulatory light chains. J Mol Biol 216: 85–93, 1990

    PubMed  Google Scholar 

  27. Chantler PD, Sellers JR, Szent-Gyorgyi AG: Cooperativity in scallop; myosin. Biochemistry 20: 210–216, 1981

    PubMed  Google Scholar 

  28. Blanchard EM, Solaro RJ: Inhibition of the activation and troponin calcium binding of dog cardiac myofibrils by acidic pH. Circ Res 55: 382–391, 1984

    PubMed  Google Scholar 

  29. DeRosier DJ, Munk P, Cox D: Automatic measurement of interference photographs from the ultracentrifuge. Anal Biochem 50: 139–253, 1972

    PubMed  Google Scholar 

  30. Richards EGD, Teller DC, Hoagland VJ, Haschemeyer RH, Schachman HK: Alignment of Schlieren and Rayleigh optical systems in the ultracentrifuge. II. A general procedure. Anal Biochem 41: 215–247, 1971

    PubMed  Google Scholar 

  31. Stafford WF: Boundary analysis in sedimentation velocity experiments. In: M.L. Johnson, L. Brand (eds). Methods in Enzymology. Numerical Computer Methods. Part B. Academic Press, Orlando, 1994, pp 478–501

    Google Scholar 

  32. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467, 1977

    PubMed  Google Scholar 

  33. Malouf NN, McMahon D, Oakeley AE, Anderson PAW: A cardiac troponin T epitope conserved across phyla. J Biol Chem 267: 9269–9274, 1992

    PubMed  Google Scholar 

  34. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC: Measurement of protein using bicinchoninic acid. Anal Biochem 150: 76–85, 1985

    PubMed  Google Scholar 

  35. Margossian SS, Lowey SS: Preparation of myosin and its subfragments from rabbit skeletal muscle. In: L.W. Cunningham, D.F. Frederiksen (eds). Methods in Enzymology. Vol. 85, Part B. Academic Press, New York, 1982, pp 55–71

    Google Scholar 

  36. Margossian SS, Bhan AK, Slayter HS: Role of the regulatory light chains in skeletal muscle actomyosin ATPase and in minifilament formation. J Biol Chem 258: 13359–13369, 1983

    PubMed  Google Scholar 

  37. Pastra-Landis SC, Lowey S: Myosin subunit interactions: Properties of the 19,000-dalton light chain-deficient myosin. J Biol Chem 261: 14811–14816, 1986

    PubMed  Google Scholar 

  38. Price KM, Littler WA, Cummins P: Myosin adenosinetriphosphatase activity and light chain subunit composition of human right and left ventricle. Cardiovasc Res 14: 555–560, 1980

    PubMed  Google Scholar 

  39. Litten RZ, Martin BJ, Low RB, Alpert NR: Altered myosin isoenzyme patterns from pressure overloaded and thyrotoxic hypertrophied rabbit hearts. Circ Res 50: 856–862, 1982

    PubMed  Google Scholar 

  40. Schier JJ, Adelstein RS: Structural and enzymatic comparison of human cardiac muscle myosins isolated from infants, adults, and patients with hypertrophic cardiomyopathy. J Clin Invest 69: 816–825, 1982

    PubMed  Google Scholar 

  41. Jin J-P, Lin J-C: Rapid purification of mammalian cardiac troponin T and its isoform switching in rat hearts during development. J Biol Chem 263: 7309–7315, 1988

    PubMed  Google Scholar 

  42. Greig A, Hirschberg Y, Anderson PAW, Hainsworth C, Malouf NN, Oakeley AE, Kay BK: Molecular basis of cardiac troponin T isoform heterogeneity in rabbit heart. Circ Res 74: 41–47, 1994

    PubMed  Google Scholar 

  43. Mesnard L, Logeart D, Taviaux S, Diriong S, Mercadier JJ, Samson F: Human cardiac troponin T: Cloning and expression of new isoforms in the normal and failing heart. Circ Res 76: 687–692, 1995

    PubMed  Google Scholar 

  44. Townsend PJ, Barton PJ, Yacoub MH, Farza H: Molecular cloning of human cardiac troponin T isoforms: Expression in developing and failing heart. J Mol Cell Cardiol 27: 2223–2236, 1995

    PubMed  Google Scholar 

  45. Anderson PAW, Malouf NN, Oakeley AE, Pagani ED, Allen PD: Troponin T isoform expression in the normal and failing human left ventricle: A correlation with myofibrillar ATPase activity. Basic Res Cardiol 87(suppl 1): 117–127, 1992

    PubMed  Google Scholar 

  46. Humphreys JE, Cummins P: Regulatory proteins of the myocardium: Atrial and ventricular tropomyosin and troponin I in the developing and adult bovine and human heart. J Mol Cell Cardiol 16: 643–657, 1984

    PubMed  Google Scholar 

  47. Head JF, Perry SV: The interaction of the calcium-binding protein (troponin C) with bivalent cations and the inhibitory protein (troponin I). Biochem J 137: 145–154, 1974

    PubMed  Google Scholar 

  48. Dobrowolski Z, Xu G-Q, Chen W, Hitchock-DeGregori S: Analysis of the regulatory and structural defects of troponin C central helix mutants. Biochemistry 30: 7089–7096, 1991

    PubMed  Google Scholar 

  49. Schreier T, Kedes L, Gahlmann R: Cloning, structural analysis, and expression of the human slow twitch skeletal muscle/cardiac troponin C gene. J Biol Chem 265: 21247–21256, 1990

    PubMed  Google Scholar 

  50. Collins JH: Myosin light chains and troponin C: Structural and evolutionary relationships revealed by amino acid sequence comparisons. J Musc Res Cell Motil 12: 3–25, 1991

    Google Scholar 

  51. Stull JT, Buss JE: Calcium binding properties of beef cardiac troponin. J Biol Chem 253: 5932–5938, 1978

    PubMed  Google Scholar 

  52. Morimoto S, Ohtsuki I: Ca2+ binding to cardiac troponin C in the myofilament lattice and its relation to the myofibrillar ATPase activity. Eur J Biochem 226: 597–602, 1994

    PubMed  Google Scholar 

  53. Margossian SS, Stafford WF: Calcium-induced dimerization of troponin-C. J Biol Chem 257: 1160–1165, 1982

    PubMed  Google Scholar 

  54. Zot HG, Potter JD: Calcium binding and fluorescence measurements of dansylaziridine-labelled troponin C in reconstituted thin filaments. J Musc Res Cell Motil 8: 428–436, 1987

    Google Scholar 

  55. Holt JC, Caulfield JB, Norton P, Chantler PD, Slayter HS, Margossian SS: Human cardiac myosin light chains: Sequence comparisons between myosin LC1 and LC2 from normal and idiopathic dilated cardiomyopathic hearts. Mol Cell Biochem 145: 89–90, 1995

    PubMed  Google Scholar 

  56. Potter JD, Sheng Z, Pan BS, Zhao J: A direct regulatory role for troponin T and a dual role for troponin C in the Ca2+ regulation of muscle contraction. J Biol Chem 270: 2557–2562, 1995

    PubMed  Google Scholar 

  57. Geisterfer-Lowrance AAT, Kass S, Tanigawa G, Vosberg HP, McKenna W, Seidman CE, Seidman JG: A molecular basis for familial hypertrophic cardiomyopathy: A b-cardiac myosin heavy chain gene missence mutation. Cell 65: 999–1006, 1990

    Google Scholar 

  58. Dantzig JA, Leonard ME, Fanapazir L, Epstein N, Goldman YE, Levine RJC, Sweeney HL: A-band length, slack length and tension in skinned soleus fibers from patients with hypertrophic cardiomyopathy caused by a mutation in the β-myosin heavy chain. Biophys J 70: A290, 1996

    Google Scholar 

  59. Cuda G, Fanapazir L, Zhu W, Sellers JR, Epstein ND: Skeletal muscle expression and abnormal function of β-myosin in hypertrophic cardiomyopathy. J Clin Invest 91: 2861–2865, 1993

    PubMed  Google Scholar 

  60. Geeves MA, Lehrer SS: Dynamics of the muscle thin filament regulatory switch: The size of the cooperative unit. Biophys J 67: 273–282, 1994

    PubMed  Google Scholar 

  61. Metzger JM: Myosin binding-induced cooperative activation of the thin filament in cardiac myocytes and skeletal muscle fibers. Biophys J 68: 1430–1442, 1995

    PubMed  Google Scholar 

  62. Lehman W, Vibert P, Uman P, Craig R: Steric-blocking by tropomyosin visualized in relaxed vertebrate muscle thin filaments. J Mol Biol 251: 191–196, 1995

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margossian, S.S., Anderson, P.A., Chantler, P.D. et al. Calcium regulation in the human myocardium affected by dilated cardiomyopathy: A structural basis for impaired Ca2+-sensitivity. Mol Cell Biochem 194, 301–313 (1999). https://doi.org/10.1023/A:1006980405359

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006980405359

Navigation