Skip to main content
Log in

Receptor-specific ligands distinguish natriuretic peptide receptors-A and -C in primate tissues

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Systemic clearance of atrial natriuretic peptide (ANP) is in part due to neutral endopeptidase (NEP) proteolysis and natriuretic peptide receptor-C (NPR-C) mediated endocytosis. Biological responses to ANP are primarily mediated by the membrane guanylyl cyclase-A/natriuretic peptide receptor-A (NPR-A). Analogs of ANP selective for NPR-A and/or resistant to NEP may have increased activity in those tissues where NPR-C and NEP are coexpressed with NPR-A. The analog of ANP termed vANP; [(R3D, G9T, R11S, M12L, G16R)ANP] is selective for human NPR-A with at least 10,000 fold reduction in affinity for human NPR-C. We report that rat NPR-A is insensitive to 10 nM vANP, demonstrating the limitations of this species in evaluating human therapeutic candidates. As an alternative approach we tested the binding and potency of receptor-selective and NEP-resistant ANP analogs in rhesus monkey tissues. Competition binding studies with a simplified version of vANP, sANP [(G9T, R11S, G16R)rANP], in rhesus monkey kidney and lung membrane preparations shows displacement of 125I-ANP from only a fraction of the total ANP receptor population, 30 and 85%, respectively. The remaining ANP binding sites can be occupied with the NPR-C selective ligand cANP(4-23). These data strongly suggest that only two classes of ANP receptor are present in these membrane preparations, NPR-A and NPR-C. The NEP resistant sANP derivative called sANP(TAPR) was 8 fold more potent (ED50 = 0.6 nM) than rANP (ED50 = SnM) in stimulating cGMP production in the lung membrane preparation. Our results demonstrate that the rhesus monkey natriuretic peptide receptors reflect the pharmacology of the human receptors, and that this species may be suitable to determine the role of NPR-C and NEP in peptide clearance and attenuating functional responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brenner BM, Ballermann BJ, Gunning ME, Zeidel ML: Diverse biological actions of atrial natriuretic peptide. Physiol Rev 70: 665–699, 1990

    Google Scholar 

  2. Ruskoaho H: Atrial natriuretic peptide: Synthesis, release, and metabolism. Pharmacol Rev 44: 479–602, 1993

    Google Scholar 

  3. Chinkers M, Garbers DL, Chang M-S, Lowe DG, Chin H, Goeddel DV, Schulz S: A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338: 78–83, 1989

    Google Scholar 

  4. Lowe DG, Chang MS, Hellmiss R, Chen E, Singh S, Garbers DL, Goeddel DV: Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction. EMBO J 8: 1377–1384, 1989

    Google Scholar 

  5. Chang MS, Lowe DG, Lewis M, Hellmiss R, Chen E, Goeddel DV: Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases. Nature 341: 68–72, 1989

    Google Scholar 

  6. Schulz S, Singh S, Bellet RA, Singh G, Tubb DJ, Chin H, Garbers DL: The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell 59: 1155–1162, 1989

    Google Scholar 

  7. Koller KJ, Lowe DG, Bennett GL, Minamino N, Kangawa K, Matsuo H, Goeddel DV: Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science 252: 120–123, 1991

    Google Scholar 

  8. Wilcox JN, Augustine A, Goeddel DV, Lowe DG: Differential regional expression of three natriuretic peptide receptor genes within primate tissues. Mol Cell Biol 11: 3454–3462, 1991

    Google Scholar 

  9. Anand-Srivastava MB, Trachte GJ: Atrial natriuretic factor receptors and signal transduction mechanisms. Pharm Rev: 455–497, 1993

  10. Almeida FA, Suzuki M, Scarborough RM, Lewicki JA, Maack T: Clearance function of type C receptors of atrial natriuretic factor in rats. Am J Physiol 256: R469–R475, 1989

    Google Scholar 

  11. Okolicany J, McEnroe GA, Koh GY, Lewicki JA, Maack T: Clearance receptor and neutral endopeptidase-mediated metabolism of atrial natriuretic factor. Am J Physiol 263: F546–F553, 1992

    Google Scholar 

  12. Koehn JA, Norman JA, Jones BN, LeSueur L, Sakane Y, Ghai RD: Degradation of Atrial Natriuretic Factor of Kidney Cortex Membranes. J Biol Chem 262: 11623–11627, 1987

    Google Scholar 

  13. Maack T, Suzuki M, Almeida FA, Nussenzveig D, Scarborough RM, McEnroe JA, Lewicki JA: Physiological role of silent receptors of atrial natriuretic factor. Science 238: 675–678, 1987

    Google Scholar 

  14. Nussenzveig DR, Lewicki JA, Maack T: Cellular mechanisms of the clearance function of type C receptors of atrial natriuretic factor. J Biol Chem 265: 20952–20958, 1990

    Google Scholar 

  15. Fuller F, Porter JG, Arfsten AE, Miller J, Schilling JW, Scarborough RM, Lewicki JA, Schenck DB: Atrial natriuretic peptide clearance receptor. Complete sequence and functional expression of cDNA clones. J Biol Chem 263: 9395–9401, 1988

    Google Scholar 

  16. Li C, Booze RM, Hersh LB: Tissue-specific expression of rat neutral endopeptidase (neprilysin) mRNAs. J Biol Chem 270: 5723–5728, 1995

    Google Scholar 

  17. Wilkins MR, Settle SL, Kirk JE, Taylor SA, Moore KP, Unwin RJ: Response to atrial natriuretic peptide, endopeptidase 24.11 inhibitor and C-ANP receptor ligand in the rat. Br J Pharmacol 107: 50–57, 1992

    Google Scholar 

  18. Jin H, Li B, Cunningham B, Tom J, Yang R, Sehl P, Thomas GR, Ko A, Oare D, Lowe DG: Novel analog of atrial natriuretic peptide selective for receptor-A produces increased diuresis and natriuresis in rats. J Clin Invest 98: 969–976, 1996

    Google Scholar 

  19. Cunningham BC, Lowe DG, Li B, Bennett BD, Wells JA: Production of an atrial natriuretic peptide variant that is specific for type A receptors. EMBO J 13: 2508–2515, 1994

    Google Scholar 

  20. Schoenfeld JR, Sehl P, Quan C, Burnier JP, Lowe DG: Agonist selectivity for three species of natriuretic peptide receptor-A. Mol Pharm 47: 172–180, 1995

    Google Scholar 

  21. Weis J: Different inhibitory potencies of various ANF-analogues in the isolated aorta from four rodent species. Pharm and Tox 68: 282–283, 1991

    Google Scholar 

  22. Lowe DG, Fendly BM: Human natriuretic peptide receptor-A guanylyl cyclase. Hormone cross-linking and antibody reactivity distinguish receptor glycoforms. J Biol Chem 267: 21691–21697 1992

    Google Scholar 

  23. Drewett JG, Fendly BM, Garbers DL, Lowe DG: Natriuretic peptide receptor-B (guanylyl cyclase-B) mediates C-type natriuretic peptide relaxation of precontracted rat aorta. J Biol Chem 270: 4668–4674, 1995

    Google Scholar 

  24. Kenny AJ, Bourne A, Ingram J: Hydrolysis of human and pig brain natriuretic peptides, urodilatin, C-type natriuretic peptide and some C-receptor ligands by endopeptidase-24.11. Biochem J 291: 83–88, 1993

    Google Scholar 

  25. Olson LJ, Lowe DG, Drewett JG: Novel natriuretic peptide receptor/ guanylyl cyclase A-selective agonist inhibits angiotensin II-and forskolin-evoked aldosterone synthesis in a human zone glomerulosa cell-line. Mol Pharmacol 50: 430–435, 1996

    Google Scholar 

  26. Schulz-Knappe P, Forssmann K, Herbst F, Hock D, Pipkorn R, Forssmann W-G: Isolation and structural analysis of ‘urodilatin’, a new peptide of the cardiodilatin-(ANP)-family, extracted from human urine. Klin Wochenschr 66: 752–759, 1988

    Google Scholar 

  27. Heim J-M, Singh S, Fulle H-J, Gerzer R: Comparison of a cloned ANF-sensitive guanylate cyclase (GC-A) with particulate guanylate cyclase from adrenal cortex. Arch Pharm 345: 64–70, 1992

    Google Scholar 

  28. Féthière J, De Léan A: Pharmacological evidence for the heterogeneity of atrial natriuretic factor-R1 receptor subtype. Mol Pharm 40: 913–922, 1991

    Google Scholar 

  29. Blaine EH, Heinel LA, Schorn TW, Marsh EA, Whinnery MA: The character of the atrial natriuretic response: Pressure and volume effects. J Hyperten 4: S17–S24, 1986

    Google Scholar 

  30. Bestle MH, Bie P: Renal effects of urodilatin and atrial natriuretic peptide in volume expanded conscious dogs. Acta Physiol Scand 149: 77–83, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sehl, P., Tom, J.Y., Oare, D. et al. Receptor-specific ligands distinguish natriuretic peptide receptors-A and -C in primate tissues. Mol Cell Biochem 178, 317–324 (1998). https://doi.org/10.1023/A:1006823732336

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006823732336

Navigation