Skip to main content
Log in

In-vivo phosphorylation of the cardiac L-type calcium channel beta-subunit in response to catecholamines

  • Part I: Cardiac Development and Regulation
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In canine myocardium, the β-subunit of the L-type Ca2+ channel is phosphorylated by cAMP dependent protein kinase in vitro as well as in vivo (Haase et al. FEBS Lett 335: 217–222, 1993). We have assessed the identity of the β-subunit as well as its in vivo phosphorylation in representative experimental groups of catecholamine-challenged canine hearts. Adrenergic stimulation by high doses of both noradrenaline and isoprenaline induced rapid (within 20 sec) and nearly complete phosphorylation of the Ca2+ channel β-subunit. Phosphorylation in vivo was about 4-fold higher as compared to untreated controls. When related to catecholamine-depleted (reserpine-treated) hearts noradrenaline and isoprenaline increased the in vivo phosphorylation of the β-subunit even 8-fold. This phosphorylation correlated positively with tissue levels of cAMP, endogenous particulated cAMP-dependent protein kinase (PKA) and the rate of contractile force development dP/dtmax. The results imply the involvement of a PKA-mediated phosphorylation of the Ca2+ channel β-subunit in the adrenergic stimulation of intact canine myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reuter H: Localization of beta adrenergic receptors, and effects of noradrenaline and cyclic nucleotides on action potentials, ionic currents and tension in mammalian cardiac muscle. J Physiol (Lond) 242: 429–451, 1974

    Google Scholar 

  2. Brum GW, Osterrieder W, Trautwein W: Beta-adrenergic increase in the calcium conductance of cardiac myocytes studied with the patch clamp. Pflügers Arch. 401: 111–118, 1984

    Google Scholar 

  3. Tsien RW, Bean BP, Hess P, Lansman JB, Nilius B, Nowycky MC: Mechanisms of calcium channel modulation by β-adrenergic agents and dihydropyridine calcium channel agonists. J Mol Cell Cardiol 18: 691–710, 1986

    PubMed  Google Scholar 

  4. Sperelakis N, Josephson IR: The slow action potential and properties of the myocardial slow channels. In Physiology and Pathophysiology of the Heart. N. Sperelakis, (ed.) Martenus Nijhoff Publishing, Boston, MA. 159–186, 1989

    Google Scholar 

  5. Hartzell HC, Mery PF, Fischmeister R, Szabo G: Sympathetic regulation of cardiac calcium current is due exclusively to cAMP-dependent phosphorylation. Nature 351: 573–576, 1991

    Article  PubMed  Google Scholar 

  6. Trautwein W, Hescheler J: Regulation of the cardiac L-type calcium current by phosphorylation and G-proteins. Annu Rev Physiol 52: 257–274, 1990

    Article  PubMed  Google Scholar 

  7. Hofmann F, Biel M, Flockerzi V: Molecular basis for Ca2+ channel diversity. Annu Rev Neurosci. 17: 399–418, 1994

    Article  PubMed  Google Scholar 

  8. Yoshida A, Takahashi M, Nishimura S, Takeshima H, Kokubun S: Cyclic AMP-dependent phosphorylation and regulation of the cardiac dihydropyrdine-sensitive Ca2+ channel. FEBS Lett. 309: 343–349, 1992

    Article  PubMed  Google Scholar 

  9. Sculptoreanu A, Rothman E, Takahashi M, Scheuer T, Catterall, WA: Voltage-dependent potentiation of the activity of cardiac L-type calcium channel α1 subunit due to phosphorylation by cAMP-dependent protein kinase. Proc Natl Acad Sci USA 90: 10135–10139, 1993

    PubMed  Google Scholar 

  10. Klöckner U, Itagaki K, Bodi I, Schwartz A: β-subunit expression is required for cAMP-dependent increase of cloned cardiac and vascular calcium channel currents. Pflügers Arch. 420: 413–415, 1992

    Google Scholar 

  11. Perez-Reyes E, Yuang W, Wei X, Bers DM: Regulation of cloned L-type cardiac calcium channel by cyclic-AMP-dependent protein kinase. FEBS Lett 342: 119–123, 1994

    Article  PubMed  Google Scholar 

  12. Singer-Lahat D, Flockerzi V, Hofmann F, Dascal N: Cardiac Ca2+ channels expressed in Xenopus oocytes are modulated by dephosphorylation but not by cAMP dependent phosphorylation. Receptors and Channels 2–3: 215–226, 1994

    Google Scholar 

  13. Hartzell HC: Filling the gaps in Ca2+ channel regulation. Biophys J 65: 1358–1359, 1993

    PubMed  Google Scholar 

  14. Haase H, Karczewki P, Beckert R, Krause EG: Phosphorylation of the L-type calcium channel β subunit is involved in β-adrenergic signal transduction in canine myocardium. FEBS Lett 335: 217–222, 1993

    PubMed  Google Scholar 

  15. Karczewski P, Bartel S, Krause EG: Differential sensitivity to isoprenaline of troponin I and phospholamban phosphorylation in isolated rat hearts. Biochem J. 266: 115–122, 1990

    PubMed  Google Scholar 

  16. Murray K, England PJ, Lynham JA, Mills D, Schmitz-Peiffer K and Reeves ML: Use of a synthetic dodeca-peptide (malantide) to measure the cyclic AMP-dependent protein kinase activity ratio in a variety of tissues. Biochem J 267: 703–708, 1990

    PubMed  Google Scholar 

  17. Hullin R, Singer-Lahat D, Freichel M, Biel M, Dascal M, Hofmann F, Flockerzi V: Calcium channel β subunit heterogeneity: Functional expression of cloned cDNA from heart, aorta and brain. EMBO J. 11: 885–890, 1992

    PubMed  Google Scholar 

  18. Calovini T, Haase H, Morano I: Steroid hormone regulation of myosin subunit expression in smooth and cardiac muscle. J Cell Biochem 58: 1–10, 1995

    PubMed  Google Scholar 

  19. Peters KA, Demaille JG, Fisher EH: Adenosine-3,5-monophosphate dependent protein kinase from bovine heart. Biochemistry 16: 5691–5697, 1977

    PubMed  Google Scholar 

  20. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685, 1979

    Google Scholar 

  21. Haase H, Striessnig J, Holtzhauer M, Vetter R, Glossmann H: A rapid procedure for the purification of cardiac 1,4-dihydropyridine receptors from porcine heart. Eur J Pharmacol 207: 51–59, 1991

    PubMed  Google Scholar 

  22. Haase H, Wallukat G, Flockerzi, V, Nastainczyk W, Hofmann F: Detection of skeletal muscle calcium channel subunits in cultured neonatal rat cardiac myocytes. Receptors and Channels 2: 41–52, 1994

    PubMed  Google Scholar 

  23. Lai Y, Seagar MJ, Takahashi M, Catterall WA: Cyclic AMP-dependent phosphorylation of two size forms of α1 subunits of L-type calcium channels in rat skeletal muscle cells. J Biol Chem 265: 10839–20848, 1990

    Google Scholar 

  24. Mundina-Weilenmann C, Chang CF, Gutierrez LM, Hosey MM: Demonstration of the phosphorylation of dihydropyridine-sensitive calcium channels in chick skeletal muscle and the resultant activation of the channel after reconstitution. J Biol Chem 266: 4067–4073, 1991

    PubMed  Google Scholar 

  25. Bruxton ILO, Brunton LL: Compartiments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J Biol Chem. 258: 10233–10239, 1983

    PubMed  Google Scholar 

  26. England PJ, Shahid M: Effects of forskolin on contractile response and protein phosphorylation in isolated perfused rat heart. Biochem J. 246:687–695, 1987

    PubMed  Google Scholar 

  27. Aass H, Skomedal T, Osnes J: Increases of cyclic AMP in subcellular fractions of rat heart muscle after β-adrenergic stimulation. J Mol Cell Cardiol 20: 847–860, 1988

    PubMed  Google Scholar 

  28. Fischmeister R, Jurevicius J: Local vs. distant effects of isoprenaline on cardiac L-type Ca current. Biophys J 68: A11, 1995

    Google Scholar 

  29. Rossie S, Catterall WA: Cyclic AMP-dependent phosphorylation of voltage-sensitive sodium channels in primary cultures of rat brain neurons. J Biol Chem 262: 12735–12744, 1987

    PubMed  Google Scholar 

  30. Kameyama M, Hofmann F, Trautwein W: On the mechanism of β-adrenergic regulation of Ca channel in guinea pig heart. Pflügers Arch 405: 285–293, 1985

    Google Scholar 

  31. Perez-Reyes E, Castellano A, Kim HS, Bertrand P, Baggstrom E, Lacerda AE, Wei X, Birnbaumer L: Cloning and expression of a cardiac/brain β subunit of the L-type calcium channel. J Biol Chem 267: 1792–1797, 1992

    PubMed  Google Scholar 

  32. Ruth P, Röhrkasten A, Biel M, Bosse E, Regulla S, Meyer HE, Flockerzi V, Hofmann F: Primary structure of the β subunit of the DHP-sensitive calcium channel from skeletal muscle. Science 245: 1115–1118, 1989

    PubMed  Google Scholar 

  33. Catterall WA, Striessnig J: Receptor sites for Ca2+ channel antagonists. Trends Pharmacol Sci 13: 256–262, 1992

    PubMed  Google Scholar 

  34. DeJong KS, Warner C, Colvin AA, Caterall WA: Characterization of the two size forms of the a, subunit of skeletal muscle L-type calcium channels. Proc Natl Acad Sci USA 88: 10778–10782, 1991

    PubMed  Google Scholar 

  35. Chang CF, Hosey MM: Dihydropyridine and phenylalkylamine receptors associated with cardiac and skeletal muscle calcium channels are structurally different. J Biol Chem. 263: 18929–18937, 1988

    PubMed  Google Scholar 

  36. Pragnell M, DeWaard M, Mori Y, Tanabe T, Snutch TP, Campbell KP: Calcium channel β-subunit binds to a conserved motif in the I-II cytoplasmic linker of the α1-subunit. Nature 368: 67–70, 1994

    PubMed  Google Scholar 

  37. Neely A, Wei X, Olcese R, Birnbaumer L, Stefani E: Potentiation by the β-subunit of the ratio of the ionic current to the charge movement in the cardiac calcium channel. Science 262: 575–578, 1993

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haase, H., Bartel, S., Karczewski, P. et al. In-vivo phosphorylation of the cardiac L-type calcium channel beta-subunit in response to catecholamines. Mol Cell Biochem 163, 99–106 (1996). https://doi.org/10.1007/BF00408645

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00408645

Key words

Navigation