Skip to main content
Log in

The substructure of myosin and the reaction mechanism of its adenosine triphosphatase

  • Review and General Articles
  • a. review articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

This review summarizes recent studies on the structure and function of myosin, and attempts to survey them critically. Merits and demerits of our original reaction mechanism of myosin-ATPase and its simplified variant proposed byTaylor et al. are described.

Recent studies on the substructure of the myosin molecule and the reaction mechanism of the myosin-ATP system strongly suggest that the myosin molecule has two nonidentical heads. Various lines of evidence are also presented for the mechanism that ATP is hydrolyzedvia two different routes: one is the simple hydrolysis through the myosin-ATP complex, and the other is the one through the reactive myosin-phosphate-ADP complex. Our recent studies clearly demonstrate that F-actin accelerates markedly de-composition of the reactive myosin-phosphate-ADP complex. The molecular mechanism of this acceleration is analyzed by use of transient enzyme kinetic methods.

Finally, the reaction mechanism of the myosinactin-ATP system is discussed in relation with the molecular mechanisms of the three fundamental steps in muscle contraction, i.e., the binding of the projections from myosin filaments with actin filaments, sliding of actin filaments past myosin filaments with movement of the projections, and detachment of the projections from actin filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. A. Engelhardt and M. N. Ljubimova, Nature 144 668–669 (1939).

    Google Scholar 

  2. A. Szent-György, “Chemistry of Muscle Contraction”, 1st ed., Academic Press, New York (1947).

    Google Scholar 

  3. A. M. Gordon, A. F. Huxley and F. J. Julian, J. Physiol. 184 143–192 (1966).

    Google Scholar 

  4. P. C. J. Ward, C. Edward and E. S. Benson, Proc. Natl. Acad. Sci. U.S. 53 1377–1384 (1965).

    Google Scholar 

  5. Y. Hayashi and Y. Tonomura, J. Biochem. 63 101–118 (1968).

    Google Scholar 

  6. A. F. Huxley, Prog. Biophys. Biophys. Chem. 7 255–318 (1959).

    Google Scholar 

  7. H. E. Huxley, in “The Cell”, ed. by J. Brachet, and A. E. Mirsky, Academic Press, New York, Vol. 4, p. 365–481 (1960).

    Google Scholar 

  8. Y. Tonomura and F. Oosawa, Ann. Rev. Biophys. 1 159–190 (1972).

    Google Scholar 

  9. Y. Tonomura, “Muscle Proteins, Muscle Contraction and Cation Transport”, Univ. of Tokyo Press and Univ. of Park Press, Tokyo and Baltimore (1972).

    Google Scholar 

  10. H. S. Slayter and S. Lowey, Proc. Natl. Acad. Sci. U. S. 58 1611–1618 (1967).

    Google Scholar 

  11. E. Mihalyi and A. G. Szent-Györgyi, J. Biol. Chem. 201 189–196 (1953).

    Google Scholar 

  12. H. Mueller and S. V. Perry, Biochem. J. 85 431–439 (1962).

    Google Scholar 

  13. T.-C. Tsao, Biochim. Biophys. Acta 11 368–382 (1953).

    Google Scholar 

  14. W. W. Kielley and W. F. Harrington, Biochim. Biophys. Acta 41 401–421 (1960).

    Google Scholar 

  15. W. W. Kielley and L. M. Barnett, Biochim. Biophys. Acta 51 589–593 (1961).

    Google Scholar 

  16. A. Stracher, Biochem. Biophys. Res. Commun. 35 519–525 (1969).

    Google Scholar 

  17. P. Dreizen and L. C. Gershman, Biochemistry 9 1688–1693 (1970).

    Google Scholar 

  18. D. W. Frederiksen and A. Holtzer, Biochemistry 7 3935–3950 (1968).

    Google Scholar 

  19. H. Hayashi, J. Biochem. 72 83–100 (1972).

    Google Scholar 

  20. Y. Hayashi, H. Takenaka and Y. Tonomura, J. Biochem. 74 1031–1048 (1973).

    Google Scholar 

  21. A. G. Weeds and S. Lowey, J. Mol. Biol. 61 701–725 (1971).

    Google Scholar 

  22. J. Dow and A. Stracher, Proc. Natl. Acad. Sci. U.S. 68 1107–1110 (1971).

    Google Scholar 

  23. A. G. Weeds and G. Frank, Cold Spring Harb. Symp. Quant. Biol. 37 9–14 (1973).

    Google Scholar 

  24. Y. Tonomura and F. Morita, J. Biochem. 46 1367–1378 (1959).

    Google Scholar 

  25. J. Gergely, A. Martonosi and M. A. Gouvea, in “Sulfur in Proteins”, ed. by R. Benesch, R. E. Benesch, P. D. Boyer, I. M. Klotz, W. R. Middlebrock, A. G. Szent-Györgyi, and D. R. Schwarz, Academic Press, New York, p. 297–315 (1959).

    Google Scholar 

  26. K. M. Nauss, S. Kitagawa and J. Gergely, J. Biol. Chem. 244 755–765 (1969).

    Google Scholar 

  27. D. M. Young, J. Biol. Chem. 242 2790–2792 (1967).

    Google Scholar 

  28. A. J. Murphy and M. F. Morales, Biochemistry 9 1528–1532 (1970).

    Google Scholar 

  29. F. Morita and K. Yagi, Biochem. Biophys. Res. Commun. 22 297–302 (1966).

    Google Scholar 

  30. F. Morita, J. Biochem. 69 517–524 (1971).

    Google Scholar 

  31. M. Yazawa, F. Morita and K. Yagi, J. Biochem. 74 1107–1117 (1973).

    Google Scholar 

  32. Y. Tonomura and S. Kitagawa, Biochim. Biophys. Acta 40 135–140 (1960).

    Google Scholar 

  33. Y. Hayashi and Y. Tonomura, J. Biochem. 68 665–680 (1970).

    Google Scholar 

  34. T. Tokiwa and Y. Tonomura, J. Biochem. 57 616–626 (1965)

    Google Scholar 

  35. H. Onishi, H. Nakamura and Y. Tonomura, J. Biochem. 64 769–784 (1968).

    Google Scholar 

  36. Y. Tonomura, H. Nakamura, N. Kinoshita, H. Onishi and M. Shigekawa, J. Biochem. 66 599–618 (1969).

    Google Scholar 

  37. R. W. Lymn and E. W. Taylor, Biochemistry 9 2975–2983 (1970).

    Google Scholar 

  38. S. Watanabe, Y. Tonomura and H. Shiokawa, J. Biochem. 40 387–402 (1952).

    Google Scholar 

  39. L. Ouellet, K. J. Laidler and M. F. Morales, Arch. Biochem. Biophys. 39 37–50 (1952).

    Google Scholar 

  40. P. Rainford, K. Hotta and M. Morales, Biochemistry 3 1213–1220 (1964).

    Google Scholar 

  41. T. Nihei and Y. Tonomura, J. Biochem. 46 305–319 (1959).

    Google Scholar 

  42. N. Azuma and Y. Tonomura, Biochim. Biophys. Acta 73 499–506 (1963).

    Google Scholar 

  43. T. Kanazawa and Y. Tonomura, J. Biochem. 57 604–615 (1965).

    Google Scholar 

  44. S. Watanabe and T. Yasui, J. Biol. Chem. 240 105–111 (1965).

    Google Scholar 

  45. F. Morita, J. Biol. Chem. 242 4501–4506 (1967).

    Google Scholar 

  46. A. Inoue, K. Shibata-Sekiya and Y. Tonomura, J. Biochem. 71 115–124 (1972).

    Google Scholar 

  47. T. Kanazawa, S. Yamada, T. Yamamoto and Y. Tonomura, J. Biochem. 70 95–123 (1971).

    Google Scholar 

  48. T. Kanazawa, M. Saito and Y. Tonomura, J. Biochem. 59 280–289 (1966).

    Google Scholar 

  49. A. Inoue and Y. Tonomura, J. Biochem. 73 555–566 (1973).

    Google Scholar 

  50. B. Finlayson and E. W. Taylor, Biochemistry 8 802–810 (1969).

    Google Scholar 

  51. N. Kinoshita, S. Kubo, H. Onishi and Y. Tonomura, J. Biochem. 65 285–301 (1969).

    Google Scholar 

  52. E. W. Taylor, R. W. Lymn and G. Moll, Biochemistry 9 2984–2991 (1970).

    Google Scholar 

  53. H. Nakamura and Y. Tonomura, J. Biochem. 63 279–294 (1968).

    Google Scholar 

  54. L. W. Nicole, J. L. Bethune, G. Kegless and E. L. Hess, in “The Proteins”, 2nd ed., ed. by Neurath, H. Academic Press, New York, Vol. 2, 305–403.

  55. D. R. Trentham, R. G. Bardsley, J. F. Eccleston and A. G. Weeds, Biochem. J. 126 635–644 (1970).

    Google Scholar 

  56. L. B. Nanninga and W. F. H. M. Mommaerts, Proc. Natl. Acad. Sci. U.S. 46 1155–1173 (1960).

    Google Scholar 

  57. K. Sekiya and Y. Tonomura, J. Biochem. 61 787–795 (1967).

    Google Scholar 

  58. Y. Tonomura, S. Kitagawa and J. Yoshimura, J. Biol. Chem. 237 3660–3666 (1962).

    Google Scholar 

  59. K. Yagi, Y. Yazawa, F. Ohtani and Y. Okamoto, presented at Japan-U.S. Seminar, Tokyo (1972).

  60. L. Sartorelli, H. J. Fromm, R. W. Benson and P. D. Boyer, Biochemistry 5 2877–2884 (1966).

    Google Scholar 

  61. K. Hotta and Y. Fujita, Physiol. Chem. & Physics 3 196–204 (1971).

    Google Scholar 

  62. A. Inoue, J. Biochem. 73 1311–1313 (1973).

    Google Scholar 

  63. M. M. Werber, A. G. Szent-Györgyi and G. D. Fasman, Biochemistry 11 2872–2883 (1972).

    Google Scholar 

  64. F. Morita, in “Molecular Mechanism of Enzyme Action” ed. by Y. Ogura, Y. Tonomura, and T. Nakamura, Univ. of Tokyo Press, Tokyo, p. 282–296 (1972).

    Google Scholar 

  65. J. C. Seidel and G. Gergely, Biochem. Biophys. Res. Commun. 44 826–830 (1971).

    Google Scholar 

  66. H. Onishi, E. Ohtsuka, M. Ikehara and Y. Tonomura, J. Biochem. 74 435–450 (1973).

    Google Scholar 

  67. N. Kinoshita, T. Kanazawa, H. Onishi and Y. Tonomura, J. Biochem. 65 567–579 (1969).

    Google Scholar 

  68. M. Ikehara, E. Ohtsuka, S. Kitagawa, K. Yagi and Y. Tonomura, J. Amer. Chem. Soc. 83 2679–2686 (1961).

    Google Scholar 

  69. H. J. Mannherz, J. B. Arrington Leigh, K. C. Holmes and G. Rosenbaum, Nature New Biology 241 226–229 (1973).

    Google Scholar 

  70. K. Imamura, T. Kanazawa, M. Tada and Y. Tonomura, J. Biochem. 57 627–636 (1965).

    Google Scholar 

  71. R. W. Lymn and E. W. Taylor, Biochemistry 10 4617–4624 (1971).

    Google Scholar 

  72. Y. Tonomura and S. Watanabe, Nature 169 112–113 (1952).

    Google Scholar 

  73. F. Morita and Y. Tonomura, J. Amer. Chem. Soc. 82 5172–5177 (1960).

    Google Scholar 

  74. A. Inoue, M. Shigekawa and Y. Tonomura, J. Biochem. 74 923–934 (1973).

    Google Scholar 

  75. L. Leadbeater and S. V. Perry, Biochem. J. 87 233–238 (1963).

    Google Scholar 

  76. E. Eisenberg and C. Moos, Biochemistry 7 1486–1489 (1968).

    Google Scholar 

  77. K. Sekiya, K. Takeuchi and Y. Tonomura, J. Biochem. 61 567–579 (1967).

    Google Scholar 

  78. M. Bárány and K. Bárány, Cold Spring Harb. Symp. Quant. Biol. 37 157–167 (1973).

    Google Scholar 

  79. Y. Tonomura, K. Yagi, S. Kubo and S. Kitagawa J. Res. Inst. Catalysis (Hokkaido Univ.) 9 256–286 (1961).

    Google Scholar 

  80. Y. Tonomura, T. Kanazawa and K. Sekiya, Ann. Rep. Sci. Works Fac. Sci. Osaka Univ. 12 1–18 (1964).

    Google Scholar 

  81. R. E. Davies, Nature 199 1068–1074 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An invited article

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tonomura, Y., Inoue, A. The substructure of myosin and the reaction mechanism of its adenosine triphosphatase. Mol Cell Biochem 5, 127–143 (1974). https://doi.org/10.1007/BF01731376

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01731376

Keywords

Navigation