Skip to main content
Log in

Pyruvate kinase activity and gluconeogenesis in RAT liver after glycogen depletion with nicotinic acid

  • General and Review Articles
  • a. general articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Nicotinic acid administration, which depletes liver glycogen, leads to an increase of both pyruvate kinase L and phosphoenolpyruvate carboxykinase in liver by a factor of nearly two. The former is not prevented by either cycloheximide or actinomycin D. L-Cysteine, an allosteric inhibitor of pyruvate kinase L, favors gluconeogenesis from lactate in both nicotinic acid treated and starved animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammon, H. P. T. and Estler, C. J., 1967. Life Sci. 6, 641–647.

    PubMed  Google Scholar 

  2. Carlson, L. A. and Nye, E. R., 1966. Acta Med. Scand. 179, 453–461.

    PubMed  Google Scholar 

  3. Sanchez-Medina, F., Sanchez-Urrutia, L., Medina, J. M. and Mayor, F., 1971. FEBS Lett. 19, 128–130.

    PubMed  Google Scholar 

  4. Moreno, F. J., Sanchez-Urrutia, L., Medina, J. M., Sanchez-Medina, F. and Mayor, F., 1975. Biochem. J. 150, 51–58.

    PubMed  Google Scholar 

  5. Krebs, H. A. and Eggleston, L. V., 1965. Biochem. J. 94, 3–4 c.

    Google Scholar 

  6. Llorente, P., Marco, R. and Sols, A., 1970. Eur. J. Biochem. 13.45–54.

    Google Scholar 

  7. Kramer, J. W. and Freedland, R. A., 1972. Proc. Soc. Exp. Biol. Med. 140, 1399–1401.

    PubMed  Google Scholar 

  8. Hems, R., Ross, B. D., Berry, M. N. and Krebs, H. A., 1966. Biochem. J. 101, 284–292.

    PubMed  Google Scholar 

  9. Krebs, H. A. and Henseleit, K., 1932. Hoppe-Seyler's Z. T. Physiol. Chem. 210, 33–66.

    Google Scholar 

  10. Krebs, H. A., Bennett, D. A. H., de Gasquet, P., Gascoyne, T. and Yoshida, T., 1963. Biochem. J. 86, 22–27.

    PubMed  Google Scholar 

  11. Krebs, H. A., Dierks, C. and Gascoyne, T., 1964. Biochem. J. 93, 112–121.

    PubMed  Google Scholar 

  12. Carbonell, J., Feliu, J. E., Marco, R. and Sols, A., 1973. Eur. J. Biochem. 37, 148–156.

    PubMed  Google Scholar 

  13. Williamson, J. R., Jakob, A. and Schols, R., 1971. Metabolism 20, 13–26.

    PubMed  Google Scholar 

  14. Exton, J. H., 1972. Metabolism 21, 945–990.

    PubMed  Google Scholar 

  15. Ross, B. D., Hems, R., Freedland, R. A. and Krebs, H. A., 1967. Biochem. J. 105, 869–875.

    PubMed  Google Scholar 

  16. Hems, D. A., Whitton, P. D. and Taylor, E. A., 1972. Biochem. J. 129, 529–538.

    PubMed  Google Scholar 

  17. Gerschenson, L. E. and Andersson, M., 1971. Biochem. Biophys. Res. Commun. 43, 1211–1218.

    PubMed  Google Scholar 

  18. Tanaka, T., Harano, Y., Sue, F. and Morimura, H., 1967. J. Biochem. (Tokyo) 62, 71–91.

    Google Scholar 

  19. Bailey, E., Stirpe, F. and Taylor, C. B., 1968. Biochem. J. 108, 427–436.

    PubMed  Google Scholar 

  20. Van Berkel, J. C., Koster, J. F. and Hülsmann, W. C., 1973. Biochem. Biophys. Acta 293, 118–124.

    PubMed  Google Scholar 

  21. Ljungström, O., Hjelmquist, G. and Engström, L., 1974. Biochim. Biophys. Acta 358, 289–298.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, F.J., Benito, M., Sánchez-Medina, F. et al. Pyruvate kinase activity and gluconeogenesis in RAT liver after glycogen depletion with nicotinic acid. Mol Cell Biochem 13, 89–93 (1976). https://doi.org/10.1007/BF01837058

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01837058

Keywords

Navigation