Skip to main content
Log in

Entanglement complexity of lattice ribbons

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a discrete ribbon model for double-stranded polymers where the ribbon is constrained to lie in a three-dimensional lattice. The ribbon can be open or closed, and closed ribbons can be orientable or nonorientable. We prove some results about the asymptotic behavior of the numbers of ribbons withn plaquettes, and a theorem about the frequency of occurrence of certain patterns in these ribbons. We use this to derive results about the frequency of knots in closed ribbons, the linking of the boundary curves of orientable closed ribbons, and the twist and writhe of ribbons. We show that the centerline and boundary of a closed ribbon are both almost surely knotted in the infinite-n limit. For an orientable ribbon, the expectation of the absolute value of the linking number of the two boundary curves increases at least as fast as √n, and similar results hold for the twist and writhe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Madras and G. Slade,The Self-Avoiding walk (Birkhäuser, Boston, 1993).

    Google Scholar 

  2. W. R. Bauer, F. H. C. Crick, and J. H. White,Sci. Amer. 243:118 (1980).

    Google Scholar 

  3. N. S. Anderson, J. W. Campbell, M. M. Harding, D. A. Rees, and J. W. B. Samuel,J. Mol. Biol. 45:85 (1969).

    Google Scholar 

  4. D. A. Rees,Polysaccharide Conformation, inMTP International Review of Science, Organic Chemistry, Series One, Vol. 7, G. O. Aspinall, ed. (Butterworths 1973).

  5. F. B. Fuller,Proc. Natl. Acad. Sci. USA 91:513 (1971).

    Google Scholar 

  6. E. J. Janse van Rensburg, E. Orlandini, D. W. Summers, M. C. Tesi, and S. G. Whittington,Phys. Rev. E 50:R4279 (1994).

    Google Scholar 

  7. A. V. Vologodskii and N. R. Cozzarelli,Annu. Rev. Biophys. Biomol. Struct. 23:609 (1994).

    Google Scholar 

  8. E. Orlandini, E. J. Janse van Rensburg, and S. G. Whittington,J. Stat. Phys. 82:1159, (1996).

    Google Scholar 

  9. E. J. Janse van Rensburg, E. Orlandini, D. W. Sumners, M. C. Tesi, and S. G. Whittington,Topology and geometry of biopolymers inMathematical Approaches to Biomolecular Structure and Dynamics, J. Mesirov, K. Schulten, and D. W. Sumners eds. (Springer-Verlag, Berlin, 1995).

    Google Scholar 

  10. J. B. Wilker and S. G. Whittington,J. Phys. A: Math. Gen. 12:L245 (1979).

    Google Scholar 

  11. J. M. Hammersley and D. J. A. Welsh,Q. J. Math. Oxford 13:108 (1962).

    Google Scholar 

  12. H. Kesten,J. Math. Phys. 4:960 (1963).

    Google Scholar 

  13. J. M. Hammersley, Private communication.

  14. G. Burde and H. Zieschang,Knots (de Gruyter, Berlin, 1985).

    Google Scholar 

  15. D. Rolfsen,Knots and Links (Publish or Perish, Wilmington, 1976).

    Google Scholar 

  16. D. W. Sumners, and S. G. Whittington,J. Phys. A: Math. Gen. 21:1689 (1988).

    Google Scholar 

  17. C. E. Soteros, D. W. Sumners and S. G. Whittington,Math. Proc. Camb. Phil. Soc. 111:75 (1992).

    Google Scholar 

  18. H. Schubert,Acta Math. 90:131 (1953).

    Google Scholar 

  19. M. Thistlethwaite,Unpublished.

  20. E. J. Janse van Rensburg, E. Orlandini, D. W. Sumners, M. C. Tesi, and S. G. Whittington,J. Phys. A: Math. Gen. 26:L981 (1993).

    Google Scholar 

  21. J. H. White,Am. J. Math. 91:693 (1969).

    Google Scholar 

  22. J. H. White,Geometry and topology of DNA and DNA-protein interactions, inNew Scientific Applications of Geometry and Topology, D. W. Sumners, ed. (American Mathematical Society, Providence, Rhode Island, 1991, p. 17.)

    Google Scholar 

  23. G. Calugareano,Czech. Math. J. 11:588 (1961).

    Google Scholar 

  24. R. C. Lacher and D. W. SumnersData structures and algorithms for the computation of topological invariants of entanglements: Link, twist and writhe, inComputer Simulations of Polymers, R. J. Roe. ed. (Prentice-Hall, Englewood Cliffs, New Jersey, 1991), p. 365.

    Google Scholar 

  25. K. V. Klenin, A. V. Vologodskii, V. V. Anshelevich, A. M. Dykhne, and M. D. Frank-Kamenetskii,J. Biomol. Struct. 5:1173 (1988).

    Google Scholar 

  26. M. O. Fenley, W. K. Olson, I. Tobias, and G. S. Manning,Biophys. Chem. 50:255 (1994).

    Google Scholar 

  27. M. C. Tesi, E. J. Janse van Rensburg, E. Orlandini, D. W. Sumners, and S. G. Whittington,Phys. Rev. E 49:868 (1994).

    Google Scholar 

  28. M.-H. Hao and W. K. Olson,Macromolecules 22:3292 (1989).

    Google Scholar 

  29. A. V. Vologodskii, S. D. Levene, K. V. Klenin, M. Frank-Kamenetskii, and N. R. Cozzarelli,J. Mol. Biol. 227:1224 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janse van Rensburg, E.J., Orlandini, E., Sumners, D.W. et al. Entanglement complexity of lattice ribbons. J Stat Phys 85, 103–130 (1996). https://doi.org/10.1007/BF02175557

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02175557

Key Words

Navigation