Skip to main content
Log in

Bounds on enhanced turbulent flame speeds for combustion with fractal velocity fields

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Rigorous upper bounds are derived for large-scale turbulent flame speeds in a prototypical model problem. This model problem consists of a reaction-diffusion equation with KPP chemistry with random advection consisting of a turbulent unidirectional shear flow. When this velocity field is fractal with a Hurst exponentH with 0<H<1, the almost sure upper bounds suggest that there is an accelerating large-scale turbulent flame front with the enhanced anomalous propagation lawy=C H t 1+H for large renormalized times. In contrast, a similar rigorous almost sure upper bound for velocity fields with finite energy yields the turbulent flame propagation law\(y = \mathop C\limits^ \sim _H t\) within logarithmic corrections. Furthermore, rigorous theorems are developed here which show that upper bounds for turbulent flame speeds with fractal velocity fields are not self-averaging, i.e., bounds for the ensemble-averaged turbulent flame speed can be extremely pessimistic and misleading when compared with the bounds for every realization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Abdel-Gayed, K. J. Al-Khishali, and D. Bradley, Turbulent burning velocities and flame straining in explosions,Proc. R. Soc. Lond. A 391:394–414 (1984).

    Google Scholar 

  2. R. G. Abdel-Gayed, D. Bradley, M. N. Hamid, and M. Lawes, Lewis number effects on turbulent burning velocity, inTwentieth Symposium (International) on Combustion (Combustion Institute, 1984), pp. 505–512.

  3. W. T. Ashurst and G. I. Sivashinsky, On flame propagation through periodic flow fields,Combust. Sci. Technol. 80:159–164 (1991).

    Google Scholar 

  4. A. Kerstein, W. T. Ashurst, and F. A. Williams, Field equation for interface propagation in an insteady homogeneous flow field,Phys. Rev. A 37:2728–2731 (1988).

    Google Scholar 

  5. A. R. Kerstein and W. T. Ashurst, Propagation rate of growing interfaces in stirred fluids,Phys. Rev. Lett. 68:934–937 (1992).

    Google Scholar 

  6. N. Peters, A spectral closure for premixed turbulent combustion in the flamelet regime,J. Fluid Mech. 242:611–629 (1992).

    Google Scholar 

  7. G. I. Sivashinksy, Cascade renormalization theory of turbulent flame speed,Combust. Sci. Technol. 62:77–96 (1988).

    Google Scholar 

  8. V. Yakhot, Propagation velocity of premixed turbulent flames,Combust. Sci. Technol. 60:191–214 (1988).

    Google Scholar 

  9. P. Clavin and F. A. Williams, Theory of premixed-flame propagation in large-scale turbulence,J. Fluid Mech. 90:589–604 (1979).

    Google Scholar 

  10. P. Clavin and F. A. Williams, Effects of molecular diffusion and of thermal expansion of the structure and dynamics of premixed flames in turbulent flows of large and low intensity,J. Fluid Mech. 116:251–282 (1982).

    Google Scholar 

  11. M. Matalon and B. J. Matkowsky, Flames as gas dynamics discontinuities,J. Fluid Mech. 124:239–259 (1982).

    Google Scholar 

  12. A. J. Majda and P. E. Souganidis, Large scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales,Nonlinearity 7:1–30 (1994).

    Google Scholar 

  13. P. F. Embid, A. J. Majda, and P. E. Souganidis, Effect geometric front dynamics for premixed turbulent combustion with separated velocity scales,Combust. Sci. Technol. 103:85–100 (1994).

    Google Scholar 

  14. P. F. Embid, A. J. Majda, and P. E. Souganidis, Comparison of turbulent flame speeds from complete averaging and theG-equation,Phys. Fluids 7:2052–2060 (1995).

    Google Scholar 

  15. M. Avellaneda and A. J. Majda, Mathematical models with exact renormalization for turbulent transport,Commun. Math. Phys. 131:381–429 (1990).

    Google Scholar 

  16. M. Avellaneda and A. J. Majda, Mathematical models with exact renormalization for the turbulent transport, II: Fractal interfaces, Non-Gaussian statistics and the sweeping effect,Commun. Math. Phys. 146:139–204 (1992).

    Google Scholar 

  17. M. Freidlin, Limit theorems for large deviations of reaction-diffusion equations,Ann. Prob. 13:639–675 (1985).

    Google Scholar 

  18. L. C. Evans and P. E. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations,Indiana U. Math. J. 38:141–172 (1989).

    Google Scholar 

  19. A. Majda, Explicit inertial range renormalization theory in a model for turbulent diffusion,J. Stat. Phys. 73:515–542 (1993).

    Google Scholar 

  20. S. P. Fedotov, Renormalization for reaction front propagation in a fully developed turbulent shear flow,Phys. Rev. E (1995), to appear.

  21. A. Majda and P. E. Souganidis, Lower bounds on enhanced turbulent flame speeds for combustion with fractal velocity fields, In preparation.

  22. X. Fernique, Regularité des fonctions aleatoires gaussiennes, inLecture Notes in Mathematics, Vol. 480 (Springer-Verlag, Berlin), pp. 1–91.

  23. X. Fernique, Regularité des fonctions aleatoires nongaussiennes, inLecture Notes in Mathematics, Vol. 976 (Springer-Verlag, Berlin), pp. 1–69.

  24. M. Weber, Analyse infinitesimale des fonctions aleatoires,Lecture Notes in Mathematics, Vol. 976 (Springer-Verlag, Berlin), pp. 383–465.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majda, A.J., Souganidis, P.E. Bounds on enhanced turbulent flame speeds for combustion with fractal velocity fields. J Stat Phys 83, 933–954 (1996). https://doi.org/10.1007/BF02179550

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179550

Key Words

Navigation