Skip to main content
Log in

A Monte Carlo algorithm for lattice ribbons

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A lattice ribbon is a connected sequence of plaquettes subject to certain selfavoidance conditions. The ribbon can be closed to form an object which is topologically either a cylinder or a Möbius band, depending on whether its surface is orientable or nonorientable. We describe a grand canonical Monte Carlo algorithm for generating a sample of these ribbons, prove that the associated Markov chain is ergodic, and present and discuss numerical results about the dimensions and entanglement complexity of the ribbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. N. Madras and G. Slade,The Self-Avoiding Walk (Birkhäuser, Boston, 1993).

    Google Scholar 

  2. D. W. Summers and S. G. Whittington,J. Phys. A 21:1689 (1988).

    Google Scholar 

  3. J. Mazur and F. L. McCrackin,J. Chem. Phys. 49:648 (1968).

    Google Scholar 

  4. W. R. Bauer, F. H. C. Crick, and J. H. White,Sci. Am. 243:118 (1980).

    Google Scholar 

  5. A. V. Vologodskii and N. R. Cozzarelli,Annu. Rev. Biophys. Biomol. Struct. 23:609 (1994).

    Google Scholar 

  6. D. A. Rees,Polysaccharide Conformation, inMTP International Review of Science, Organic Chemistry Series One, Vol. 7, G. O. Aspinall, ed. (Butterworths, 1973) p. 251.

  7. E. J. Janse van Rensburg, E. Orlandini, D. W. Sumners, M. C. Tesi, and S. G. Whittington,Phys. Rev. E 50:R4279 (1994).

    Google Scholar 

  8. J. C. Le Guillou and J. Zinn-Justin,Phys. Rev. B 21:3976 (1980),J. Phys. (Paris)50: 1365 (1989).

    Google Scholar 

  9. J. H. White,Am. J. Math. 91:693 (1969).

    Google Scholar 

  10. F. B. Fuller,Proc. Natl Acad. Socc USA 91:513 (1971).

    Google Scholar 

  11. G. Calugareano,Czech. Math. J. 11:588 (1961).

    Google Scholar 

  12. S. Y. Shaw and J. C. Wang,Science 260:533 (1993).

    Google Scholar 

  13. N. Madras, A. Orlitsky, and L. A. Shepp,J. Stat. Phys. 58:159 (1990).

    Google Scholar 

  14. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,J. Chem. Phys. 21:1087 (1953).

    Google Scholar 

  15. B. Berg and D. Foerster,Phys. Lett. 106B:323 (1981).

    Google Scholar 

  16. C. Aragão de Carvalho, S. Caracciolo, and J. Frolich,Nucl. Phys. B 251:209 (1983).

    Google Scholar 

  17. E. J. Janse van Rensburg and S. G. Whittington,J. Phys. A 24:5553 (1991).

    Google Scholar 

  18. R. Brower, Private communication (1991).

  19. N. Madras and A. D. Sokal,J. Stat. Phys. 50:109 (1988).

    Google Scholar 

  20. A. Berretti and A. D. Sokal,J. Stat. Phys. 40:483 (1985).

    Google Scholar 

  21. S. Caracciolo and A. D. Sokal,J. Phys. A 19:L797 (1986).

    Google Scholar 

  22. A. D. Sokal and L. E. Thomas,J. Stat. Phys. 54:797 (1989).

    Google Scholar 

  23. S. Caracciolo, A. Pelissetto, and A. D. Sokal,J. Stat. Phys. 63:857 (1991).

    Google Scholar 

  24. S. Caracciolo, A. Pelissetto, and A. D. Sokal,J. Phys. A 23:4589 (1990).

    Google Scholar 

  25. S. Caracciolo, A. Pelissetto, and A. D. Sokal,J. Stat. Phys. 60:1 (1990).

    Google Scholar 

  26. B. Li, N. Madras, and A. Sokal, Critical exponents, hyperscaling and universal amplitude ratios for two-and three-dimensional self-avoiding walks, Preprint (1994).

  27. A. J. Guttmann,J. Phys. A 20:1839 (1987).

    Google Scholar 

  28. D. C. Rapaport,J. Phys. A 8:1328 (1975).

    Google Scholar 

  29. A. V. Vologodskii, A. V. Lukashin, M. D. Frank-Kamentskii, and V. V. Anshelevich,Sov. Phys.-JETP 39:1059 (1974).

    Google Scholar 

  30. E. J. Janse van Rensburg, E. Orlandini, D. W. Sumners, M. C. Tesi, and S. G. Whittington,J. Phys. A: Math. Gen 26:L981 (1993).

    Google Scholar 

  31. A. V. Vologodskii, A. V. Lukashin, and M. D. Frank-Kamenetskii,Sov. Phys.-JETP 40:932 (1975).

    Google Scholar 

  32. J. P. J. Michels and F. W. Wiegel,Proc. R. Soc. A 403:269 (1986).

    Google Scholar 

  33. E. J. Janse van Rensburg and S. G. Whittington,J. Phys. A 23:3573 (1990).

    Google Scholar 

  34. K. Koniaris and M. Muthukumar,J. Chem. Phys. 95:2873 (1991).

    Google Scholar 

  35. E. Orlandini, E. J. Janse van Rensburg, M. C. Tesi, and S. G. Whittington,J. Phys. A 27:335 (1994).

    Google Scholar 

  36. W. F. Pohl, InLecture Notes in Mathematics, Vol. 894, (1981), p. 113.

  37. B. Duplantier,Commun. Math. Phys. 82:41 (1981).

    Google Scholar 

  38. N. Pippenger,Discrete Appl. Math. 25:273 (1989).

    Google Scholar 

  39. J. P. J. Michiels and F. W. Wiegel,J. Phys. A 22:2393 (1989).

    Google Scholar 

  40. D. Rolfsen,Knots and Links (Publish or Perish, Wilmington, Delaware, 1976).

    Google Scholar 

  41. R. C. Lacher and D. W. Sumners, Data structures and algorithms for the computation of topological invariants of entanglements: Link, twist and writhe, inComputer Simulations of Polymers, R. J. Roe, ed. (Prentice-Hall, Englewood Cliffs, New Jersey, 1991), p. 365.

    Google Scholar 

  42. M. C. Tesi, E. J. Janse van Rensburg, E. Orlandini, and S. G. Whittington,J. Phys. A 27:347 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlandini, E., Janse van Rensburg, E.J. & Whittington, S.G. A Monte Carlo algorithm for lattice ribbons. J Stat Phys 82, 1159–1198 (1996). https://doi.org/10.1007/BF02179807

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179807

Key Words

Navigation