Skip to main content
Log in

Distributive processes and combinatorial dynamics

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We describe a new family of Markov processes, a prototype for which is in the statistics of a test molecule undergoing “random” energy transfer in collisional complexes with heat-bath particles. Master equations for several versions of this process are constructed and solved exactly under purely statistical prescriptions of the mechanism and degrees of freedom available. Their eigenfunctions, arising through a natural factorization of the transition kernels, prove to be classical polynomials of Laguerre and Jacobi type; the relaxation times are given by simple terminating series in the degree-of-freedom parameters. Moreover, the spectral representations of such kernels prove to be Erdelyi-type bilinear expansion in the respective eigenfunctions, giving these little-known formulas a previously unsuspected physical interpretation. A remarkable property of the solutions is that they are both exact and parametrized over the whole range of behavior from effective “Brownian motion” at one extreme to virtually purely random processes at the other. Autocorrelation functions for equilibrium fluctuations in the same ensembles are also obtained and shown to be strictly exponential. Applications of such “distributive processes” are discussed with reference to both the physics of energy transfer and possible alternative realizations, e.g., in operations research. Some related mathematical topics, notably the role of fractional integral-operators in the master equation, are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. S. Kassel,J. Phys. Chem. 32:225 (1928);32:1065 (1928).

    Google Scholar 

  2. L. S. Kassel,The Kinetics of Chemical Change (Chemical Catalogue Co., New York, 1932).

    Google Scholar 

  3. R. Levine and J. Jortner, eds.,Molecular Energy Transfer (Wiley, New York/Israel Universities Press, Jerusalem, 1976).

    Google Scholar 

  4. A. Erdelyi,Sitzungsber. Akad. Wiss. Wien Kl. IIa,147:513 (1938);148:3 (1939).

    Google Scholar 

  5. A. Erdelyi,Renc. Acc. Naz. Lincei 24:347 (1936).

    Google Scholar 

  6. R. D. Cooper, M. R. Hoare, and M. Rahman,J. Math. Anal. Appl. 61:262 (1977).

    Google Scholar 

  7. M. Rahman,SIAM J. Math. Anal. 7:92 (1976).

    Google Scholar 

  8. R. D. Cooper, M. R. Hoare, and M. Rahman, to be published.

  9. M. R. Hoare and M. Rahman, to be published.

  10. A. I. Kinchine,The Mathematical Foundations of Statistical Mechanics (Dover, New York, 1969), Chapter 2.

    Google Scholar 

  11. M. R. Hoare,Mol. Phys. 4:465 (1961);J. Chem. Phys. 41:2356 (1964).

    Google Scholar 

  12. I. Oppenheim, K. E. Shuler, and G. W. Weiss,Adv. Mol. Relax. Proc. 1:13 (1967).

    Google Scholar 

  13. M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions (NBS Applied Mathematics Series No. 55, Washington, 1964).

  14. M. R. Hoare, to be published.

  15. M. Lax,Rev. Mod. Phys. 32:25 (1960).

    Google Scholar 

  16. M. R. Hoare,Adv. Chem. Phys. 20:135 (1971).

    Google Scholar 

  17. H. C. Andersen, I. Oppenheim, K. E. Shuler, and G. H. Weiss,J. Math. Phys. 5:522 (1964).

    Google Scholar 

  18. S. Goldberg,Introduction to Difference Equations (Wiley, New York, 1958), Section 2.4.

    Google Scholar 

  19. B. Ross, ed.,Fractional Calculus and its Applications (Springer Lecture Notes in Mathematics No. 457; Springer, Berlin, 1975).

    Google Scholar 

  20. E. Schrödinger,Proc. Roy. Irish Acad. 46:9 (1940).

    Google Scholar 

  21. M. E. Kogbetliantz,Ann. Sci. École Norm. Sup. 49:137 (1932), Eq. (32).

    Google Scholar 

  22. M. R. Hoare and E. Thiele,Disc. Faraday Soc. 44:30 (1967).

    Google Scholar 

  23. G. N. Watson,Sitzungsber. Akad. Wiss. Wien, Kl. IIa 147:151 (1938).

    Google Scholar 

  24. L. Koschmieder,Sitzungsber. Akad. Wiss. Wien, Kl. IIa 145:651 (1932).

    Google Scholar 

  25. A. Erdelyi,Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 2, Eq. 10.12(35).

    Google Scholar 

  26. L. Infeld and T. E. Hull,Rev. Mod. Phys. 23:21 (1951).

    Google Scholar 

  27. M. E. H. Ismail,J. Math. Anal. Appl. 57:487 (1977).

    Google Scholar 

  28. N. B. Slater,Theory of Unimolecular Reactions (Cornell University Press, Ithaca, New York, 1959).

    Google Scholar 

  29. J. L. Lavoie, T. J. Osier, and R. Tremblay,SIAM Rev. 18:240 (1976).

    Google Scholar 

  30. M. R. Hoare, to be published.

  31. W. Miller,Lie Theory and Special Functions (Academic Press, New York, 1968).

    Google Scholar 

  32. G. Hadinger, N. Bessis, and G. Bessis,J. Math. Phys. 15:716 (1974).

    Google Scholar 

  33. P. A. P. Moran,The Theory of Storage (Methuen, London, 1959).

    Google Scholar 

  34. S. O. Rice, inSelected Papers on Noise and Stochastic Processes, N. Wax, ed. (Dover, New York, 1954), p. 133.

    Google Scholar 

  35. G. Gasper,J. Math. Anal. Appl. 45:176 (1974).

    Google Scholar 

  36. W. N. Bailey,Generalized Hypergeometric Series (Cambridge Mathematical Tract No. 32; Cambridge University Press, 1935; 2nd edition, 1964).

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work was financially supported by the Science Research Council (London).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, R.D., Hoare, M.R. Distributive processes and combinatorial dynamics. J Stat Phys 20, 597–628 (1979). https://doi.org/10.1007/BF01009513

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01009513

Key words

Navigation