Skip to main content
Log in

Solubility and Raman Spectroscopic Study of As(III) Speciation in Organic Compound-Water Solutions. A Hydration Approach for Aqueous Arsenic in Complex Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Solubilities of arsenolite (As2O3, cub.) were measured from 22 to 90°C in water–acetone, water–acetic acid, and water—formic acid solutions of compositions ranging from the pure organic compound to pure water. Raman spectra were obtained at ambient temperature on As-containing water–acetic acid and water–acetone solutions. Results show that arsenic solvation by these organic compounds is negligible and hydroxide species dominate As speciation over a wide range of water activity (aH 2 O> 0.01). The solubility data were analyzed using an approach based on stoichiometric hydration reactions. Results show that As2O3 solubility can be described as a function of water activity, independently of the nature of the organic compound, by involving two neutral As hydroxide complexes: As(OH)3 and As(OH)3·4H2O. Stability constants derived for these species indicate that hydration weakens with increasing temperature. Calculations using these constants show that at low temperatures the tetrahydrate As(OH)3·4H2O is dominant in water-rich solutions; by contrast, in high-temperature crustal fluids, As(OH)3 becomes the major As species. The proposed hydration model can be used to analyze solubility of arsenic-bearing minerals and arsenic transport in complex H2O–CO2—electrolyte solutions encountered in natural and industrial environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. A. Heinrich and P. J. Eadington, Econ. Geol. 81, 511 (1986).

    Google Scholar 

  2. J. M. Balantine and J. N. Moore, Geochim. Cosmochim. Acta 52, 475 (1988).

    Google Scholar 

  3. G. S. Pokrovski, R. Gout, J. Schott, A. Zotov, and J.-C. Harrichoury, Geochim. Cosmochim. Acta 60, 737 (1996).

    Google Scholar 

  4. M. Born, Z. Phys. 45 1 (1920).

    Google Scholar 

  5. J.-L. Dandurand and J. Schott, J. Solution Chem. 16, 237 (1987).

    Google Scholar 

  6. J. Schott and J.-L. Dandurand, Chemical Transport in Metasomatic Processes, H. C. Helgeson, ed., (D. Riedel, New York, 1987), p. 733.

    Google Scholar 

  7. J. V. Walther and J. Schott, Nature 332, 635 (1988).

    Google Scholar 

  8. J. Fein and J. V. Walther, Amer. J. Sci. 289, 975 (1989).

    Google Scholar 

  9. J.-L. Dandurand and J. Schott, J. Phys. Chem. 96, 7770 (1992).

    Google Scholar 

  10. D. L. Shettel, Amer.Geophys.Union.Trans. 54, 480 (1973).

    Google Scholar 

  11. J. V. Walter and P. Orville, Amer.Miner. 68, 731 (1983).

    Google Scholar 

  12. W. L. Marshall and A. Quist, J.Phys.Chem. 74, 346 (1970).

    Google Scholar 

  13. A. Quist and W. L. Marshall, J.Phys.Chem. 72, 1536 (1968).

    Google Scholar 

  14. A. Quist and W. L. Marshall, J.Phys.Chem. 72, 684 (1968).

    Google Scholar 

  15. Yu. V. Alekhin and A. G. Vakulenko, Geochem. Intern. 25, 97 (1988).

    Google Scholar 

  16. Yu. V. Alekhin, A. G. Vakulenko, and M. Razina, Experimental Problems of Geology (Nauka, Moscow, 1994) p. 543 (in Russian).

    Google Scholar 

  17. M. Razina, Ph. D. thesis, Moscow University (1989) (in Russian).

  18. Z. Marczenko, Separation and Spectrophotometric Determination of Elements (Ellis Horwood, Chichester, 1986), p. 149.

    Google Scholar 

  19. G. Charlot, Les Méthodes de la Chimie Analytique (Masson, Paris, 1966).

    Google Scholar 

  20. J. Roux and C. Bény, Géoraman-89 Contributions, 21, (1989).

  21. J. M. Prausnitz, Molecular Thermodynamics of Fluid-Phase Equilibria. (Prentice-Hall, Englewood Cliffs, NJ, 1969).

    Google Scholar 

  22. Thermodynamics of Liquid-Vapour Equilibria, M. Vrevsky, ed. (Nauka, Leningrad, 1987) (in Russian).

    Google Scholar 

  23. R. Gout, G. S. Pokrovski, J. Schott, and A. Zwick, J. Raman Spectrosc. 28, 725 (1997).

    Google Scholar 

  24. T. M. Loehr and R. A. Plane, J. Inorg. Chem. 7, 1708 (1968).

    Google Scholar 

  25. W. F. Linke, Solubilities of Inorganic and Metallorganic Compounds, 4th Edition, (Amer. Chem. Soc., Washington, D.C., 1958).

    Google Scholar 

  26. H. C. Helgeson, D. H. Kirkham, and G. C. Flowers, Amer. J. Sci. 281, 1249 (1981).

    Google Scholar 

  27. M. Randall and C. F. Failey, Chem. Rev. 4, 271 (1927).

    Google Scholar 

  28. Chemical Physics of Hydration J. Ulstup et al., eds., (Elsevier, Amsterdam, 1985).

    Google Scholar 

  29. J. R. Holloway, Geology 12, 455 (1984).

    Google Scholar 

  30. T. S. Bowers and H. C. Helgeson, Geochim. Cosmochim. Acta 47, 1247 (1983).

    Google Scholar 

  31. M. Lazeeva and R. Markuzin, J. Applied Chem. 46, 360 (1973) (in Russian).

    Google Scholar 

  32. R. Hansen et al., J.Phys.Chem. 59, 391 (1955).

    Google Scholar 

  33. V. Udovenko and L. Aleksandrova, J. Phys. Chem. 34, 1366 (1960) (in Russian).

    Google Scholar 

  34. M. Vrevsky, Works on the Theory of Solutions, (Nauka, Moscow, 1953) (in Russian).

    Google Scholar 

  35. H. Teylor, J. Phys.Chem. 4, 290 (1900).

    Google Scholar 

  36. J. Griswold and S. Wong, Chem. Eng. Data Symp. Ser. 48, 18 (1952).

    Google Scholar 

  37. N. N. Akinfiev, A. V. Zotov, J. Schott, I. V. Zakirov, and J. C. Harrichoury, Geokhimia p. 1133 (1998) (in Russian).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokrovski, G.S., Bény, JM. & Zotov, A.V. Solubility and Raman Spectroscopic Study of As(III) Speciation in Organic Compound-Water Solutions. A Hydration Approach for Aqueous Arsenic in Complex Solutions. Journal of Solution Chemistry 28, 1307–1327 (1999). https://doi.org/10.1023/A:1021795924067

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021795924067

Navigation