Skip to main content
Log in

Secondary structure of the entomocidal toxin fromBacillus thuringiensis subsp.kurstaki HD-73

  • Published:
Journal of Protein Chemistry Aims and scope Submit manuscript

Abstract

The secondary structure of the toxin fromBacillus thuringiensis subsp.kurstaki (Btk) HD-73 was estimated by Raman, infrared, and circular dichroism spectroscopy, and by predictive methods. Circular dichroism and infrared spectroscopy gave an estimate of 33–40% α-helix, whereas Raman and predictive methods gave approximately 20%. Raman and circular dichroism spectra, as well as predictive methods, indicated that the toxin contains 32–40% β-sheet structure, whereas infrared spectroscopy gave a slightly lower estimate. Thus, all of these approaches are in agreement that the native conformation of Btk HD-73 toxin is highly folded and contains considerable amounts of both α-helical and β-sheet structures. No significant differences were detected in the secondary structure of the toxin either in solution or as a hydrated pellet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, R. E. Jr., Faust, R. M., Wabiko, H., Raymond, K. C., and Bulla, L. A. (1987).CRC Crit. Rev. Biotechnol. 6, 163–230.

    Article  CAS  Google Scholar 

  • Argos, P., and MohanaRao, J. K. (1986).Methods Enzymol. 130, 185–207.

    Article  CAS  PubMed  Google Scholar 

  • Bietlot, H., Carey, P. R., Choma, C. T., Kaplan, H., Lessard, T., and Pozsgay, M. (1989).Biochem. J. 260, 87–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bietlot, H., Vishnubhatla, I., Carey, P. R., Pozsgay, M., and Kaplan, H. (1990).Biochem. J. (in press).

  • Brousseau, R., and Masson, L. (1988).Biotech. Adv. 6, 697–724.

    Article  CAS  Google Scholar 

  • Byler, D. M., and Susi, H. (1986).Biopolymers 25, 469–487.

    Article  CAS  PubMed  Google Scholar 

  • Carey, P. R. (1982).Biochemical Applications of Raman and Resonance Raman Spectroscopies, Academic Press, New York, pp. 48–70.

    Book  Google Scholar 

  • Carey, P. R., Fast, P., Kaplan, H., and Pozsgay, M. (1986).Biochim. Biophys. Acta 872, 169–176.

    Article  CAS  Google Scholar 

  • Chang, C. T., Wu, C. S., and Yang, J. T. (1978).Anal. Biochem. 91, 13–31.

    Article  CAS  PubMed  Google Scholar 

  • Chen, G. C., and Yang, J. T. (1977).Anal. Lett. 10, 1195–1207.

    Article  CAS  Google Scholar 

  • Chen, Y. H., Yang, J. T., and Martinez, H. M. (1972).Biochemistry 11, 4120–4131.

    Article  CAS  PubMed  Google Scholar 

  • Chou, P. Y., and Fasman, G. D. (1979).Biochemistry 13, 211–222.

    Article  Google Scholar 

  • Dev, S. B. (1987).J. Biol. Physiol. 15, 57–61.

    Article  CAS  Google Scholar 

  • Fraser, R. D., and Suzuki, E. (1966).Anal. Chem. 38, 1770–1773.

    Article  CAS  Google Scholar 

  • Garnier, J., Osguthorpe, D. J., and Robson, B. (1978).J. Mol. Biol. 120, 97–120.

    Article  CAS  PubMed  Google Scholar 

  • Harada, I., and Takeuchi, H. (1986). InSpectroscopy of Biological Systems (Clark, R. J., and Hester, R. E., eds.), John Wiley and Sons, New York, pp. 113–175.

    Google Scholar 

  • Kauppinen, J. K., Moffatt, D. J., Mantsch, H. H., and Cameron, D. C. (1981).Appl. Spectrosc. 35, 271–277.

    Article  CAS  Google Scholar 

  • Lippert, J. L., Tyminski, D., and Desmeules, P. J. (1976).J. Am. Chem. Soc. 98, 7075–7080.

    Article  CAS  PubMed  Google Scholar 

  • Lord, R. C., and Yu, N. T. (1970).J. Mol. Biol. 50, 509–524.

    Article  CAS  PubMed  Google Scholar 

  • Nagmatsu, Y., Itai, Y., Hatanaka, C., Funatusu, G., and Hayashi, K. (1984).Agric. Biol. Chem. 48, 611–619.

    Google Scholar 

  • Parker, F. S. (1983).Applications of Infrared, Raman, and Resonance Raman Spectroscopy in Biochemistry, Plenum Press, New York, pp. 83–155.

    Google Scholar 

  • Pozsgay, M., Fast, P., Kaplan, H., and Carey, P. R. (1987).J. Invertebr. Pathol. 50, 246–253.

    Article  CAS  Google Scholar 

  • Provencher, S. W., and Glockner, J. (1981).Biochemistry 20, 33–37.

    Article  CAS  PubMed  Google Scholar 

  • Surewicz, W. K., and Mantsch, H. H. (1988).Biochim. Biophys. Acta 952, 115–130.

    Article  CAS  PubMed  Google Scholar 

  • Surewicz, W. K., and Mantsch, H. H. (1990). InProtein Engineering—Approaches From the Classical to the Genetic (Narang, S., ed.), Butterworth, New York, pp. 131–157.

    Google Scholar 

  • Thomas, G. J. Jr., and Prescott, B. (1983).J. Mol. Biol. 165, 321–356.

    Article  CAS  PubMed  Google Scholar 

  • Tu, A. T. (1986). InSpectroscopy of Biological Systems (Clark, R. J., and Hester, R. E., eds.), John Wiley and Sons, New York, pp. 47–112.

    Google Scholar 

  • Yang, J. T., Wu, C. S., and Martinez, H. M. (1986).Methods Enzymol. 130, 208–269.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choma, C.T., Surewicz, W.K., Carey, P.R. et al. Secondary structure of the entomocidal toxin fromBacillus thuringiensis subsp.kurstaki HD-73. J Protein Chem 9, 87–94 (1990). https://doi.org/10.1007/BF01024989

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01024989

Key words

Navigation