Skip to main content
Log in

Energy band theory and the lattice dynamics of rare gas crystals

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

The results of a simple local-density energy band model (Xα) are used to carry through a calculation of the phonon dispersion relations in fcc Ne and Ar. Adiabatic phonons, calculated from the computed Xα total energy surface, are perturbed by the Fröhlich Hamiltonian with electron-phonon matrix elements calculated from the Xα energy bands. The use of low-order perturbation theory gives results in fair comparison with observed values, but shows the general scheme to be feasible. Except for questions of the exact physical content of the Xα model itself, the calculation is entirely ab initio, and is believed to be the first such achieved in insulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Google Scholar 

  2. J. C. Slater, Quantum Theory of Molecules and Solids (McGraw-Hill, New York, 1974), Vol. 4, and references therein.

    Google Scholar 

  3. J. W. D. Connolly, in Modern Theoretical Chemistry, G. Segal, ed. (Plenum Press, New York, 1976), Vol. 7, pp. 105–132, and references therein.

    Google Scholar 

  4. J. C. Slater, Phys. Rev. 81, 385 (1951).

    Google Scholar 

  5. P. O. Löwdin, Phys. Rev. 97, 1474 (1955).

    Google Scholar 

  6. R. A. Donnelly and R. G. Parr, J. Chem. Phys. 69, 4431 (1978); P. Jørgensen and N. Y. öhrn, Phys. Rev. A 8, 112 (1973).

    Google Scholar 

  7. S. B. Trickey and J. P. Worth, Int. J. Quantum Chem. S11, 529 (1977).

    Google Scholar 

  8. Robert M. Pick, in Computational Solid State Physics, F. Herman, N. W. Dalton, and T. R. Koehler, eds. (Plenum, New York, 1972), p. 325; Robert M. Pick, M. Pick, M. H. Cohen, and Richard M. Martin, Phys. Rev. B 1, 910 (1970); L. J. Sham and J. M. Ziman, in Solid State Physics, F. Seitz and D. Turnbull, eds. (Academic, New York, 1963), Vol. 15, p. 221; S. K. Sinha, Phys. Rev. 169, 477 (1968).

    Google Scholar 

  9. T. R. Koehler and R. K. Nesbet, Phys. Rev. 135, A638 (1964).

    Google Scholar 

  10. H. Fröhlich, Phys. Rev. 79, 845 (1950).

    Google Scholar 

  11. S. B. Trickey, F. R. Green, and F. W. Averill, Phys. Rev. B 8, 4822 (1973); J. R. Sabin, J. P. Worth, and S. B. Trickey, Phys. Rev. B 11, 3658 (1975); J. P. Worth, B. I. Dunlap, and S. B. Trickey, Chem. Phys. Lett. 55, 168 (1978); J. P. Worth and S. B. Trickey, Phys. Rev. B 19, 3310 (1979).

    Google Scholar 

  12. L. Hedin and S. Lundqvist, in Solid State Physics, F. Seitz, D. Turnbull, and H. Ehrenreich, eds. (Academic, New York, 1969), Vol. 23, p. 1 (see especially Section IV.15).

    Google Scholar 

  13. Phillip L. Taylor, A Quantum Approach to the Solid State (Wiley, New York 1974), pp. 175–193.

    Google Scholar 

  14. K. Schwarz, Phys. Rev. B 5, 2466 (1972).

    Google Scholar 

  15. R. Gaspar, Acta Phys. Hung. 3, 263 (1954); W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Google Scholar 

  16. J. Hirschfelder, C. F. Curtis, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1964).

    Google Scholar 

  17. S. B. Trickey, N. M. Witriol, and T. R. Koehler, in Proc. 14th Int. Conf. Low Temp. Phys., M. Krusius and M. Vuorio, eds. (North-Holland, Amsterdam, 1975), Vol. 1, p. 491.

    Google Scholar 

  18. T. R. Koehler, in Proceedings of the International School of Physics Enrico Fermi, Course 55, S. Califano, ed. (Academic, New York, 1975), p. 416.

    Google Scholar 

  19. L. F. Mattheiss, J. H. Wood, and A. C. Switendick, in Methods in Computational Physics, B. Alder, S. Fernbach, and M. Rotenberg, eds. (Academic, New York, 1968), Vol. 8, p. 63.

    Google Scholar 

  20. David C. Golibersuch, Phys. Rev. 157, 532 (1967).

    Google Scholar 

  21. J. Kenney, Quarterly Progress Report #62, MIT Solid State Molecular Theory Group (Oct. 15, 1966), unpublished, p. 26.

  22. L. Nordheim, Ann. Phys. (Lpz.) 9, 607 (1931).

    Google Scholar 

  23. J. P. Worth, Ph.D. Diss., Univ. of Florida, Gainesville (1976), unpublished, pp. 30–33.

    Google Scholar 

  24. N. Rösch, W. G. Klemperer, and K. H. Johnson, Chem. Phys. Lett. 23, 149 (1973).

    Google Scholar 

  25. L. P. Bouckaert, R. Smoluchowski, and E. P. Wigner, Phys. Rev. 50, 58 (1936).

    Google Scholar 

  26. J. Zak, Phys. Rev. 151, 464 (1966).

    Google Scholar 

  27. G. L. Pollack, Rev. Mod. Phys. 36 748 (1964).

    Google Scholar 

  28. Y. Endoh, G. Shirane, and J. Skalyo Jr., Phys. Rev. B 11, 168 (1975).

    Google Scholar 

  29. Y. Fujii, N. A. Lurie, R. Pynn, and G. Shirane, Phys. Rev. B 10, 3647 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by Research Corporation and National Science Foundation, and based in part on the Ph.D. thesis of J. P. Worth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Worth, J.P., Trickey, S.B. Energy band theory and the lattice dynamics of rare gas crystals. J Low Temp Phys 38, 393–411 (1980). https://doi.org/10.1007/BF00114334

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00114334

Keywords

Navigation